Airborne and Space-borne Remote Sensing of Cryosphere

  • Kenneth C. Jezek


The Cryosphere broadly constitutes all the components of the Earth system which contain water in a frozen state [1]. As such, glaciers, ice sheets, snow cover, lake and river ice, and permafrost make up the terrestrial elements of the Cryosphere. Sea ice in all of its forms, frozen sea bed and icebergs constitute the oceanic elements of the Cryosphere while ice particles in the upper atmosphere and icy precipitation near the surface are the representative members of the Cryosphere in atmospheric systems.


Brightness Temperature Synthetic Aperture Radar Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer Radar Altimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Those components of the Earth system that contain water in its frozen form.


Radio detection and ranging systems.


Light detection and ranging systems.


Radio frequency receivers designed to detect emitted radiation from a surface and in accordance with Planck’s law.

Synthetic aperture radar

Radar system which increases along track resolution by using the motion of the platform to synthesize a large antenna.


Persistently frozen ground.

Ice sheet

Continental-scale, freshwater ice cover that deforms under its own weight.

Sea ice

Saline ice formed when ocean water freezes.


Long, channelized, slabs of freshwater ice thick enough to deform under their own weight.

Seasonal snow

The annual snow that blankets land cover in the winter and melts by summer.


Primary Literature

  1. 1.
    IGOS (2007) Integrated global observing strategy cryosphere theme report – for the monitoring of our environment from space and from Earth. WMO/TD-No. 1405. World Meteorological Organization, Geneva, 100pGoogle Scholar
  2. 2.
    Perovich D, Light B, Eicken H, Jones K, Runciman K, Nghiem S (2007) Increasing solar heating of the Arctic ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys Res Lett 34:L19505. doi: 10.1029/2007GL031480 ADSCrossRefGoogle Scholar
  3. 3.
    Perovich D, Richter-Menge J, Jones K, Light B (2008) Sunlight, water and ice: extreme arctic sea ice melt during the summer of 2007. Geophys Res Lett 35:L11501. doi: 1029/2008GL034007 ADSCrossRefGoogle Scholar
  4. 4.
    Ainley D, Tynan C, Stirling I (2003) Sea ice: a critical habitat for polar marine mammals. In: Thomas D, Dieckmann G (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 240–266Google Scholar
  5. 5.
    Arrigo K (2003) Primary production in sea ice. In: Thomas D, Dieckmann G (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 143–183Google Scholar
  6. 6.
    Lizotte M (2003) The microbiology of sea ice. In: Thomas D, Dieckmann G (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 184–210Google Scholar
  7. 7.
    Grosse G, Romanovsky V, Jorgenson T, Water Anthony K, Brown J, Overduin P (2011) Vulnerability and feedbacks of permafrost to climate change. EOS 92(9):73–74ADSCrossRefGoogle Scholar
  8. 8.
    Cazenave A, Llovel W (2010) Contemporary sea level rise. Ann Rev Mar Sci 2:145–173CrossRefGoogle Scholar
  9. 9.
    Prowse TD, Bonsal B, Duguay C, Hessen D, Vuglinsky V (2007) River and lake ice. In: Eamer J, Ahlenius H, Prestrud P, United Nations Environment Programme et al (eds) Global outlook for ice and snow. United Nations Environment Programme, Nairobi, pp 201–214. ISBN 978-92-807-2799-9Google Scholar
  10. 10.
    Kim Y, Kimball J, McDonald K, Glassy J (2011) Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing. IEEE Trans Geosci Remote Sens 49(3):949–960ADSCrossRefGoogle Scholar
  11. 11.
    McKinley AC (1929) Applied aerial photography. Wiley, New York, 341pGoogle Scholar
  12. 12.
    Mittelholzer W and others (1925) By airplane towards the north pole (trans: Paul E, Paul C). Hougton Mifflin, Boston, 176pGoogle Scholar
  13. 13.
    Wilkins H (1929) The Wilkins-Hearst Antarctic Expedition, 1928–1929. Geogr Rev 19(3):353–376CrossRefGoogle Scholar
  14. 14.
    Wilkins H (1930) Further Antarctic explorations. Geogr Rev 20(3):357–388CrossRefGoogle Scholar
  15. 15.
    Byrd RE (1930) Little America. G.P. Putman’s Sons, New York, 422pGoogle Scholar
  16. 16.
    McDonald RA (1995) Corona: success for space reconnaissance, a look into the cold war and a revolution in intelligence. Photogramm Eng Remote Sens 61(6):689–720Google Scholar
  17. 17.
    Peebles C (1997) The Corona Project: America’s First Spy Satellites. Naval Institute Press, Annapolis, 351pGoogle Scholar
  18. 18.
    Wheelon AD (1997) Corona: the first reconnaissance satellites. Phys Today 50(2):24–30CrossRefGoogle Scholar
  19. 19.
    Richelson JT (1998) Scientists in black. Sci Am 278(2):48–55CrossRefGoogle Scholar
  20. 20.
    Sohn HS, Jezek KC, van der Veen CJ (1998) Jakobshavn Glacier, West Greenland: 30 years of spaceborne observations. Geophys Res Lett 25(14):2699–2702ADSCrossRefGoogle Scholar
  21. 21.
    Zhou G, Jezek KC (2002) 1960s era satellite photograph mosaics of Greenland. Int J Remote Sens 23(6):1143–1160CrossRefGoogle Scholar
  22. 22.
    Bindschadler RA, Vornberger P (1998) Changes in the West Antarctic ice sheet since 1963 from declassified satellite photography. Science 279:689–692ADSCrossRefGoogle Scholar
  23. 23.
    Kim K, Jezek KC, Sohn H (2001) Ice shelf advance and retreat rates along the coast of Queen Maud Land, Antarctica. J Geophys Res 106(C4):7097–7106ADSCrossRefGoogle Scholar
  24. 24.
    Kim K, Jezek K, Liu H (2007) Orthorectified image mosaic of the Antarctic coast compiled from 1963 Argon satellite photography. Int J Remote Sens 28(23–24):5357–5373CrossRefGoogle Scholar
  25. 25.
    Waite AH, Schmidt SJ (1962) Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. Proc IRE 50(6):1515–1520CrossRefGoogle Scholar
  26. 26.
    Bogorodsky VV, Bentley CR, Gudmandsen PE (1985) Radioglaciology. D. Reidel, Dordrecht, 254pCrossRefGoogle Scholar
  27. 27.
    Fisher E, McMechan G, Gorman M, Cooper A, Aiken C, Ander M, Zumberge M (1989) Determination of bedrock topography beneath the Greenland ice sheet by three-dimensional imaging of radar sounding data. J Geophys Res 94(B3):2874–2882ADSCrossRefGoogle Scholar
  28. 28.
    Koenig L, Martin S, Studinger M (2010) Polar airborne observations fill gap in satellite data. EOS 91(38):333–334ADSCrossRefGoogle Scholar
  29. 29.
    Schanda E (1986) Physical fundamentals of remote sensing. Springer, Berlin, 187pCrossRefGoogle Scholar
  30. 30.
    Hall D, Martinec J (1985) Remote sensing of ice and snow. Chapman and Hall, New York, 189pCrossRefGoogle Scholar
  31. 31.
    Rees WG (2006) Remote sensing of snow and ice. Taylor and Francis Group, Boca Raton, 285pGoogle Scholar
  32. 32.
    Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, Oxford, 373pGoogle Scholar
  33. 33.
    Carsey FD (ed) (1992) Microwave remote sensing of sea ice, A.G.U. geophysical monograph 68. American Geophysical Union, Washington, DC, 462pGoogle Scholar
  34. 34.
    Hollinger J, Peirce J, Poe G (1990) SSM/I instrument evaluation. IEEE Trans Geosci Remote Sens 28(5):781–790ADSCrossRefGoogle Scholar
  35. 35.
    Parkinson C, Gloersen P (1993) Global sea ice cover. In: Gurney R, Foster J, Parkinson C (eds) Atlas of satellite observations related to global change. Cambridge University Press, Cambridge, pp 371–383Google Scholar
  36. 36.
    Zwally HJ, Yi D, Kwok R, Zhao Y (2008) ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell sea. J Geophys Res 113:C02S15. doi: 10.1029/2007JC004284 CrossRefGoogle Scholar
  37. 37.
    Kwok R, Cunningham G, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic ocean sea ice cover:2003–2008. J Geophys Res 114:C07005. doi: 10.1029/2009JC005312 CrossRefGoogle Scholar
  38. 38.
    Williams R Jr, Hall D (1993) Glaciers. In: Gurney R, Foster J, Parkinson C (eds) Atlas of satellite observations related to global change. Cambridge University Press, Cambridge, pp 401–422Google Scholar
  39. 39.
    Swithinbank C (1973) Higher resolution satellite pictures. Polar Rec 16(104):739–751CrossRefGoogle Scholar
  40. 40.
    Swithinbank C, Lucchitta BK (1986) Multispectral digital image mapping of Antarctic ice features. Ann Glaciol 8:159–163ADSGoogle Scholar
  41. 41.
    U.S. Geological Survey (2010) Satellite image atlas of glaciers of the world. USGS Fact Sheet FS 2005-3056, 2pGoogle Scholar
  42. 42.
    Merson RH (1989) An AVHRR mosaic of Antarctica. Int J Remote Sens 10:669–674CrossRefGoogle Scholar
  43. 43.
    Bindschadler R, Vornberger P (1990) AVHRR imagery reveals Antarctic ice dynamics. EOS 71:741–742ADSCrossRefGoogle Scholar
  44. 44.
    Ferrigno JG, Mullins JL, Stapleton JA, Chavez PS Jr, Velasco MG, Williams RS Jr (1996) Satellite image map of Antarctica, Miscellaneous investigations map series 1-2560. U.S Geological Survey, RestonGoogle Scholar
  45. 45.
    Fahnestock MR, Bindschadler RK, Jezek KC (1993) Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science 262:1525–1530ADSCrossRefGoogle Scholar
  46. 46.
    Jezek KC (2008) The RADARSAT-1 Antarctic Mapping Project. BPRC Report No. 22. Byrd Polar Research Center, The Ohio State University, Columbus, 64pGoogle Scholar
  47. 47.
    Jezek KC (1999) Glaciologic properties of the Antarctic ice sheet from spaceborne synthetic aperture radar observations. Ann Glaciol 29:286–290ADSCrossRefGoogle Scholar
  48. 48.
    Jezek K (2003) Observing the Antarctic ice sheet using the RADARSAT-1 synthetic aperture radar. Polar Geogr 27(3):197–209CrossRefGoogle Scholar
  49. 49.
    Liu H, Jezek K (2004) A complete high-resolution coastline of Antarctica extracted from orthorectified Radarsat SAR imagery. Photogramm Eng Remote Sens 70(5):605–616Google Scholar
  50. 50.
    Scambos TA, Haran T, Fahnestock M, Painter T, Bohlander J (2007) MODIS-based mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens Environ 111(2–3):242–257CrossRefGoogle Scholar
  51. 51.
    Bindschadler R, Vornberger P, Fleming A, Fox A, Mullins J, Binnie D, Paulsen S, Granneman B, Gorodetzky D (2008) The Landsat image mosaic of Antarctica. Remote Sens Environ 112(12):4214–4226CrossRefGoogle Scholar
  52. 52.
    Korona J, Berthier E, Bernarda M, Rémy F, Thouvenot E (2008) SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: reference images and topographies during the fourth International Polar Year (2007–2009). ISPRS J Photogramm Remote Sens 64(2):204–212. doi: 10.1016/j.isprsjprs.2008.10.005 ADSCrossRefGoogle Scholar
  53. 53.
    Goldstein RM, Englehardt H, Kamb B, Frohlich R (1993) Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262:1525–1530ADSCrossRefGoogle Scholar
  54. 54.
    Kwok R, Fahnestock M (1996) Ice sheet motion and topography from radar interferometry. IEEE Trans Geosci Remote Sens 34(1):189–199ADSCrossRefGoogle Scholar
  55. 55.
    Joughin I, Kwok R, Fahnestock M (1996) Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland. J Glaciol 42(142):564–575Google Scholar
  56. 56.
    Gray AL, Short N, Matter KE, Jezek KC (2001) Velocities and ice flux of the Filchner Ice Shelf and its tributaries determined from speckle tracking interferometry. Can J Remote Sens 27(3):193–206Google Scholar
  57. 57.
    Joughin I (2002) Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann Glaciol 34(1):195–201ADSCrossRefGoogle Scholar
  58. 58.
    Eldhuset P, Andersen S, Hauge EI, Weydahl D (2003) ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard. Int J Remote Sens 24(7):1415–1437CrossRefGoogle Scholar
  59. 59.
    Rignot E, Forster R, Isaaks B (1996) Mapping of glacial motion and surface topography of Hielo Patagonico Norte, Chile, using satellite SAR L-band interferometry data. Ann Glaciol 23:209–216ADSGoogle Scholar
  60. 60.
    Surazakov A, Aizen V (2006) Estimating volume change of mountain glaciers using SRTM and map-based topographic data. IEEE Trans Geosc Remote Sens 44(10):2991–2995ADSCrossRefGoogle Scholar
  61. 61.
    Joughin I, Gray L, Bindschadler R, Price S, Morse D, Hulba C, Mattar K, Werner C (1999) Tributaries of West Antarctic ice streams revealed by RADARSAT interferometer. Science 286:283–286CrossRefGoogle Scholar
  62. 62.
    Stearns L, Jezek K, Van der Veen CJ (2005) Decadal scale variations in ice flow along Whillans ice stream and its tributaries, West Antarctica. J Glaciol 51(172):147–157CrossRefGoogle Scholar
  63. 63.
    Beem L, Jezek K, van der Veen CJ (2010) Basal melt rates beneath the Whillans ice stream, West Antarctica. J Glaciol 56(198):647–654CrossRefGoogle Scholar
  64. 64.
    Luckman L, Quencyand D, Beven S (2007) The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sens Environ 111:172–181CrossRefGoogle Scholar
  65. 65.
    Floricioiu D, Eineder M, Rott H, Yague-Martinez N, Nagler T (2009) Surface velocity and variations of outlet glaciers of the Patagonia Icefields by means of TerraSAR-X. In: Geoscience and remote sensing symposium, IGARSS 2009, vol 2, Cape Town, 12–17 Jul 2009, pp 1028–1031Google Scholar
  66. 66.
    Forster R, Rignot E, Isacks B, Jezek K (1999) Interferometric radar observations of the Hielo Patagonico Sur, Chile. J Glaciol 45(150):325–337CrossRefGoogle Scholar
  67. 67.
    Paul F, Haeberli W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys Res Lett 35:L21502. doi: 10.1029/2008GL034718 ADSCrossRefGoogle Scholar
  68. 68.
    Yu J, Liu H, Jezek K, Warner R, Wen J (2010) Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier system by incorporating Radarsat SAR interferometry and ICESat laser altimeter measurements. J Geophys Res 115:B11102. doi: 10.1029/2010JB007456 ADSCrossRefGoogle Scholar
  69. 69.
    Thomas RH (1993) Ice sheets. In: Gurney R, Foster J, Parkinson C (eds) Atlas of satellite observations related to global change. Cambridge University Press, Cambridge, pp 385–400Google Scholar
  70. 70.
    Bhattacharya I, Jezek K, Wang L, Liu H (2009) Surface melt area variability of the Greenland ice sheet: 1979–2008. Geophys Res Lett 36:L20502. doi: 10.1029/2009GL039798 ADSCrossRefGoogle Scholar
  71. 71.
    Liu H, Wang L, Jezek K (2006) Spatio-temporal variations of snow melt zones in Antarctic ice sheet derived from satellite SMMR and SSM/I data (1978–2004). J Geophys Res 111:F01003. doi: 1029/2005JF0000318 CrossRefGoogle Scholar
  72. 72.
    Rignot E, Thomas R (2002) Mass balance of the polar ice sheets. Science 297(5586):1502–1506ADSCrossRefGoogle Scholar
  73. 73.
    Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311(5673):986–990ADSCrossRefGoogle Scholar
  74. 74.
    Zwally HJ, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, Saba J, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glaciol 51(175):509–527CrossRefGoogle Scholar
  75. 75.
    Wingham DJ, Shepherd A, Muir A, Marshall G (2006) Mass balance of the Antarctic ice sheet. Philos Trans R Soc A 364:1627–1635ADSCrossRefGoogle Scholar
  76. 76.
    Larsen CF, Motyka RJ, Arendt AA, Echelmeyer KA, Geissler PE (2007) Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise. J Geophys Res Earth 112:F01007CrossRefGoogle Scholar
  77. 77.
    Thomas R, Frederick E, Krabill W, Manizade S, Martin C (2006) Progressive increase in ice loss from Greenland. Geophys Res Lett 33:L10503. doi: 10.1029/2006GL026075 ADSCrossRefGoogle Scholar
  78. 78.
    Herzfeld UC, McBride PJ, Zwally HJ, Dimarzio J (2008) Elevation change in Pine Island Glacier, Walgreen Coast Antarctica, based on GLAS (2003) and ERS-1(1995) altimeter data analyses and glaciological implications. Int J Remote Sens 29(19):5533–5553. doi: 10.1080/01431160802020510 CrossRefGoogle Scholar
  79. 79.
    Chen J, Wilson C, Blankenship D, Tapley B (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2. doi: 10.1038/NGEO694
  80. 80.
    Luthcke SB, Zwally HJ, Abdalati W, Rowlands D, Ray R, Nerem R, Lemoine F, McCarthy J, Chinn D (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314(5803):1286–1289ADSCrossRefGoogle Scholar
  81. 81.
    Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi: 10.1029/2009GL040222 ADSCrossRefGoogle Scholar
  82. 82.
    Luthcke S, Arendt A, Rowlands D, McCarthy J, Larsen C (2008) Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J Glaciol 54(188):767–777CrossRefGoogle Scholar
  83. 83.
    Thomas R, Davis C, Frederick E, Krabill W, Li Y, Manizade S, Martin C (2008) A comparison of Greenland ice-sheet volume changes derived from altimetry measurements. J Glaciol 54(185):203–212CrossRefGoogle Scholar
  84. 84.
    Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. doi: 10.1029/2011GL046583 CrossRefGoogle Scholar
  85. 85.
    Hall D, Riggs G, Salomonson V, DiGirolamo N, Bayr K (2002) MODIS snow-cover products. Remote Sens Environ 83:181–194CrossRefGoogle Scholar
  86. 86.
    Dery S, Brown R (2007) Recent northern hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys Res Lett 34:L22504. doi: 10.1029/2007GL031474 ADSCrossRefGoogle Scholar
  87. 87.
    Foster J, Chang A (1993) Snow cover. In: Gurney R, Foster J, Parkinson C (eds) Atlas of satellite observations related to global change. Cambridge University Press, Cambridge, pp 361–370Google Scholar
  88. 88.
    Forster R, Long D, Jezek K, Drobot S, Anderson M (2001) The onset of Arctic sea-ice snow melt as detected with passive and active microwave remote sensing. Ann Glaciol 33:85–93ADSCrossRefGoogle Scholar
  89. 89.
    Jeffries M, Morris K, Kozlenko N (2005) Ice characteristics and processes, and remote sensing of frozen rivers and lakes. In: Duguay C, Piertroniro A (eds) Remote sensing of northern hydrology, Geophysical monograph series 163. American Geophysical Union, Washington, DC, pp 63–90CrossRefGoogle Scholar
  90. 90.
    Duguay C, Zhang T, Leverington D, Romanovsky V (2005) Satellite remote sensing of permafrost and seasonally frozen ground. In: Duguay C, Piertroniro A (eds) Remote sensing of northern hydrology, Geophysical monograph series 163. American Geophysical Union, Washington, DC, pp 91–142CrossRefGoogle Scholar
  91. 91.
    Jeffries M, Morris K, Liston G (1996) Method to determine lake depth and water availability on the north slope of Alaska with spaceborne imaging radar and numberical ice growth modeling. Arctic 49(4):367–374Google Scholar
  92. 92.
    Jezek K, Wu X, Gogineni P, Rodriguez E, Freeman A, Fernando-Morales F, Clark C (2011) Radar images of the bed of the Greenland ice sheet. Geophys Res Lett 38:L01501. doi: 10.1029/2010GL045519 CrossRefGoogle Scholar
  93. 93.
    Jezek K, Drinkwater M (2010) Satellite observations from the International Polar Year. EOS Trans AGU 91(14):125–126ADSCrossRefGoogle Scholar
  94. 94.
    Crevier Y, Rigby G, Werle D, Jezek K, Ball D (2010) A RADARSAT-2 snapshot of Antarctica during the 2007–08 IPY. Newsl Can Antarct Res Netw 28:1–5Google Scholar
  95. 95.
    Picardi G, Plaut JJ, Biccari D, Bombaci O, Calabrese D, Cartacci M, Cicchetti A, Clifford SM, Edenhofer P, Farrell WM, Federico C, Frigeri A, Gurnett DA, Hagfors T, Heggy E, Herique A, Huff RL, Ivanov AB, Johnson WTK, Jordan RL, Kirchner DL, Kofman W, Leuschen CJ, Nielsen E, Orosei R, Pettinelli E, Phillips RJ, Plettemeier D, Safaeinili A, Seu R, Stofan ER, Vannaroni G, Watters TR, Zampolini E (2005) Radar soundings of subsurface Mars. Science 310(5756):1925–1928. doi: 10.1126/science.1122165 ADSCrossRefGoogle Scholar
  96. 96.
    Asmus VV, Dyaduchenko VN, Nosenko YI, Polishchuk GM, Selin VA (2007) A highly elliptical orbit space system for hydrometeorological monitoring of the Arctic region. WMO Bull 56(4):293–296Google Scholar
  97. 97.
    Drinkwater MR, Jezek KC, Key J (2008) Coordinated satellite observations during the International Polar Year: towards achieving a Polar Constellation. Space Res Today 171:6–17CrossRefGoogle Scholar
  98. 98.
    Goodison B, Brown J, Jezek K, Key J, Prowse T, Snorrason A, Worby T (2007) State and fate of the polar cryosphere, including variability in the Artic hydrologic cycle. WMO Bull 56(4):284–292Google Scholar

Books and Reviews

  1. Gloersen P, Campbell W, Cavalieri D, Comiso J, Parkinson C, Zwally H (1992) Arctic and Antarctic sea ice, 1978–1987: satellite passive microwave observations and analysis, NASA SP-511. NASA, Washington, DC, 290pGoogle Scholar
  2. Parkinson C, Comiso J, Zwally H, Cavalieri D, Gloersen P, Campbell W (1987) Arctic sea ice, 1973–1976: satellite passive microwave observations, NASA SP-489. NASA, Washington, DC, 296pGoogle Scholar
  3. Schnack-Schiel S (2003) The macrobiology of sea ice. In: Thomas D, Dieckmann G (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 211–239Google Scholar
  4. Weeks W, Hibler W (2010) On sea ice. University of Alaska Press, Fairbanks, 664pGoogle Scholar
  5. Zwally H, Comiso J, Parkinson C, Campbell W, Carsey F, Gloersen P (1983) Antarctic sea ice, 1973–1976: satellite passive microwave observations, NASA SP-459. NASA, Washington, DC, 206pGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Byrd Polar Research Center, School of Earth SciencesThe Ohio State UniversityColumbusUSA

Personalised recommendations