Ocean Acidification

  • Maria Debora Iglesias-Rodriguez


The oceans play a central role in the maintenance of life on Earth. Oceans provide extensive ecosystems for marine animals and plants covering two-thirds of the Earth’s surface, are essential sources of food, economic activity, and biodiversity, and are central to the global biogeochemical cycles. The oceans are the largest reservoir of carbon in the Planet, and absorb approximately one-third of the carbon emissions that are released to the Earth’s atmosphere as a result of human activities. Since the beginning of industrialization, humans have been responsible for the increase in one greenhouse gas, carbon dioxide (CO2), from approximately 280 parts per million (ppm) at the end of the nineteenth century to the current levels of 390ppm. As well as affecting the surface ocean pH, and the organisms living at the ocean surface, these increases in CO2 are causing global mean surface temperatures to rise.


Dissolve Inorganic Carbon Particulate Organic Carbon Ocean Acidification Carbonate Chemistry Photosynthetic Carbon Fixation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Organisms’ physiological, morphological, and behavioral changes associated with environmental selection pressure. These are typically changes in size, growth rates, production rates of metabolites, or reproduction rates.


Change in population composition and numbers in response to environmental selection pressure. Adaptation is largely driven by the inherent genomic properties of a population (e.g., gene richness, genomic complexity, genetic diversity). In order for a population to adapt, a subset of its members (genotypes/ecotypes) may change in relative abundance.


Period since the beginning of industrialization when the release of CO2 and other by-products of human activities have had a profound effect on the Earth’s ecosystems.

Biological pump

The biological processes (e.g., photosynthesis, calcification) that contribute to the downward flux of carbon from the ocean surface to the deep sea.


Animals and plants associated with a specific geographical region.


Deposition of the soluble mineral phase of calcium carbonate (CaCO3). In the marine environment, calcifiers include plants (e.g., coccolithophores, green and red algae, calcareous dinoflagellates) and animals (e.g., foraminifera, pteropods, fish, bivalves, gastropods, corals, echinoderms, crustacea, sponges).

Calcium carbonate saturation horizon

The depth of the ocean below which the saturation state of calcium carbonate is below 1, and therefore dissolution increases dramatically. This depth is also termed lysocline and it is dependent upon temperature and pressure.

Ocean acidification

Period of accelerated decline in ocean pH as a result of increasing formation of carbonic acid from rising dissolved carbon dioxide in seawater as a result of human activities.


pH is defined as –log10 [H+] and represents a measure of the acidity of a solution. A pH of 7 is neutral, a pH below 7 indicates that the solution is acid, and a pH above 7 indicates that the solution is alkaline. The pH scale is logarithmic, which means that each unit change in pH equals a tenfold change in acidity. The average surface ocean pH is ∼8.1.

Saturation state of calcium carbonate (Ω)

The product of the concentration of dissolved calcium and carbonate ions in seawater divided by the stoichiometric solubility product (Ω = [Ca2+][CO 3 2− ]/K sp) of the biomineral produced by an organism, that is, aragonite or calcite. When Ω>1, the water is in supersaturated state with respect to calcite or aragonite, and carbonate precipitates; when Ω<1 the water is in undersaturated state with respect to calcite or aragonite and these minerals dissolve; when Ω=1 the water is in saturated state with respect to calcite or aragonite and there is no precipitation or dissolution of carbonate.


Primary Literature

  1. 1.
    Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365ADSCrossRefGoogle Scholar
  2. 2.
    Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04, doi:10.1029/2004JC002671zbMATHGoogle Scholar
  3. 3.
    Ridgwell A, Schmidt DN (2010) Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nat Geosci 3:196–200ADSCrossRefGoogle Scholar
  4. 4.
    Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi:10.1146/annurev.marine.010908.163834CrossRefGoogle Scholar
  5. 5.
    Cooley SR, Doney SC (2009) Anticipating ocean acidification’s economic consequences for commercial fisheries. Environ Res Lett 4:024007. doi:10.1088/1748-9326/4/2/024007ADSCrossRefGoogle Scholar
  6. 6.
    Gibbs SJ, Bown PR, Sessa JA, Bralower TJ, Wilson PA (2006) Nannoplankton extinction and origination across the Paleocene-Eocene thermal maximum. Science 314:1770–1773ADSCrossRefGoogle Scholar
  7. 7.
    Tyrrell T, Zeebe RE (2004) History of carbonate ion concentration over the last 100 million years. Geochim Cosmochim Acta 68:3521–3530ADSCrossRefGoogle Scholar
  8. 8.
    Iglesias-Rodrıguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust VE, Boessenkool KP (2008) Phytoplankton calcification in a high CO2 world. Science 320:336–339ADSCrossRefGoogle Scholar
  9. 9.
    MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffret C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquart E, Young JR (1997) The Cretaceous-tertiary biotic transition. J Geol Soc 154:265–292CrossRefGoogle Scholar
  10. 10.
    Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313ADSCrossRefGoogle Scholar
  11. 11.
    Feely RA et al (2008) PICES Press 16(1):22–26Google Scholar
  12. 12.
    Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55:30–36CrossRefGoogle Scholar
  13. 13.
    Archer D (2005) Fate of fossil fuel CO2 in geological time. J Geophys Res 110: C09S05, doi:10.1029/2004JC002625Google Scholar
  14. 14.
    Garcia HE, Boyer TP, Levitus S, Locarnini RA, Antonov JI (2005) Climatological annual cycle of upper ocean oxygen content anomaly. Geophys Res Lett 32:L09604. doi:10.1029/2004GL022286CrossRefGoogle Scholar
  15. 15.
    Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19:R602–R614. doi:10.1016/j.cub.2009.05.046CrossRefGoogle Scholar
  16. 16.
    Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2:199–229CrossRefGoogle Scholar
  17. 17.
    Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, 65, Amsterdam, pp 346Google Scholar
  18. 18.
    Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371ADSCrossRefGoogle Scholar
  19. 19.
    Frankignoulle M, Canon C, Gattuso J-P (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39:458–462CrossRefGoogle Scholar
  20. 20.
    Intergovernmental Panel on Climate Change (2001) Climate change 2001: impacts, adaptation and vulnerability. In: McCarthy JJ et al (eds) Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  21. 21.
    Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc Roy Soc Lon B 275:1767–1773CrossRefGoogle Scholar
  22. 22.
    Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134CrossRefGoogle Scholar
  23. 23.
    Venn AA, Tambutté E, Lotto S, Zoccola D, Allemand D, Tambutté S (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. Proc Natl Acad Soc 106:16574–16579CrossRefGoogle Scholar
  24. 24.
    Raven JA, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society policy Document 12/05, LondonGoogle Scholar
  25. 25.
    Tortell PD, Rau GH, Morel FMM (2000) Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnol Oceanogr 45:1485–1500CrossRefGoogle Scholar
  26. 26.
    Tortell PD, Payne CD, Li Y, Trimborn S, Rost, B, Smith, WO, Riesselman, C, Dunbar, RB, Sedwick, P, and DiTullio, GR (2008) CO2 sensitivity of Southern ocean phytoplankton. Geophys Res Lett 35: L04605, 5 pp, doi:10.1029/2007GL032583Google Scholar
  27. 27.
    Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367ADSCrossRefGoogle Scholar
  28. 28.
    Shi D, Xu Y, Morel FMM (2009) Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences 6:1199–1207ADSCrossRefGoogle Scholar
  29. 29.
    Palacios SL, Zimmerman RC (2007) Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar Ecol Prog Ser 344:1–13CrossRefGoogle Scholar
  30. 30.
    Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements of Eelgrass. Plant Physiol 115:599–607Google Scholar
  31. 31.
    Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327:676–679ADSCrossRefGoogle Scholar
  32. 32.
    Tortell PD, DiTullio GR, Sigman DM, Morel FMM (2002) CO2 effects on taxonomic composition and nutrient utilization in an equatorial Pacific phytoplankton assemblage. Mar Ecol Prog Ser 236:37–43CrossRefGoogle Scholar
  33. 33.
    Blackford JC (2010) Predicting the impacts of ocean acidification: challenges from an ecosystem perspective. J Mar Syst 81:12–18. doi:10.1016/j.jmarsys.2009.12.016CrossRefGoogle Scholar
  34. 34.
    Barcelos e Ramos J, Biswas H, Schulz KG, LaRoche J, Riebesell U (2007) Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer. Trichodesmium Glob Biogeochem Cycles 21: GB2028, 6 pp, doi:10.1029/2006GB002898Google Scholar
  35. 35.
    Hutchins DA, Fu F-X, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52:1293–1304CrossRefGoogle Scholar
  36. 36.
    Feely RA, Orr J, Fabry VJ, Kleypas JA, Sabine CL, Landgon C (2009) Present and future changes in seawater chemistry due to ocean acidification. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. AGU Monograph, Washington, DCGoogle Scholar
  37. 37.
    Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf1369 sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830ADSCrossRefGoogle Scholar
  38. 38.
    Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46ADSCrossRefGoogle Scholar
  39. 39.
    Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120ADSCrossRefGoogle Scholar
  40. 40.
    Kleypas JA, Buddemeier RW, Gattuso J-P (2001) The future of coral reefs in an age of global change. Int J Earth Sci 90:426–437CrossRefGoogle Scholar
  41. 41.
    Zondervan I, Zeebe RE, Rost B, Riebesell U (2001) Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. Glob Biogeochem Cycles 15:507–516ADSCrossRefGoogle Scholar
  42. 42.
    Feely RA, Sabine CL, Lee K, Millero FJ, Lamb MF, Greeley D, Bullister JL, Key RM, Peng T-H, Kozyr A, Ono T, Wong CS (2002) In situ calcium carbonate dissolution in the Pacific Ocean. Glob Biogeochem Cycles 16:1144ADSCrossRefGoogle Scholar
  43. 43.
    Leclercq N, Gattuso J-P, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564CrossRefGoogle Scholar
  44. 44.
    Zondervan I, Rost B, Riebesell U (2002) Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J Exp Marine Biol Ecol 272:55–70CrossRefGoogle Scholar
  45. 45.
    Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558CrossRefGoogle Scholar
  46. 46.
    Langdon C, Broecker WS, Hammond DE, Glenn E, Fitzsimmons K, Nelson SG, Peng T-S, Hajdas I, Bonani G (2003) Effect of elevated CO2 on the community metabolism of an experimental coral reef. Glob Biogeochem Cycles 17:1–14. doi:10.1029/2002GB001941CrossRefGoogle Scholar
  47. 47.
    Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso JP (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668CrossRefGoogle Scholar
  48. 48.
    Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110: C09S07, doi:10.1029/2004JC002576Google Scholar
  49. 49.
    Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will human induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146CrossRefGoogle Scholar
  50. 50.
    Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop, St. Petersburg, FL, USA, 18–20 Apr 2005, sponsored by NSF, NOAA, and the US Geological Survey
  51. 51.
    Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34: L07603, doi:10.1029/2006GL028554 Google Scholar
  52. 52.
    Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes ICES. J Mar Sci 65:414–432Google Scholar
  53. 53.
    Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99. doi:10.1038/nature07051ADSCrossRefGoogle Scholar
  54. 54.
    Nienhuis S, Palmer AR, Harley CDG (2010) Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proc Roy Soc B: Biol Sci 277(1693):2553–2558. doi:10.1098/rspb.2010.0206CrossRefGoogle Scholar
  55. 55.
    Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso J-P (2010) Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300ADSCrossRefGoogle Scholar
  56. 56.
    Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Soc 105:17442–17446ADSCrossRefGoogle Scholar
  57. 57.
    Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6:2637–2646, ADSCrossRefGoogle Scholar
  58. 58.
    Müller MN, Schulz KG, Riebesell U (2010) Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosciences 7:1109–1116ADSCrossRefGoogle Scholar
  59. 59.
    Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533, ADSCrossRefGoogle Scholar
  60. 60.
    Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686ADSCrossRefGoogle Scholar
  61. 61.
    Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2009) Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss 6:2267–2284, ADSCrossRefGoogle Scholar
  62. 62.
    Walther K, Sartoris FJ, Bock C, Pörtner HO (2009) Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences 6:2207–2215ADSCrossRefGoogle Scholar
  63. 63.
    Kleppel GS, Dodge RE, Reese CJ (1989) Changes in pigmentation associated with the bleaching of stony corals. Limnol Oceanogr 34:1331–1335CrossRefGoogle Scholar
  64. 64.
    Herfort L, Thake B, Taubner I (2008) Bicarbonate stimulation of calcification and photosynthesis in two hermatypic corals. J Phycol 44:91–98CrossRefGoogle Scholar
  65. 65.
    Bown PR, Lees JA, Young JR (2004) In: Thierstein HR, Young JR (eds) Coccolithophores –from molecular processes to global impact. Springer, Berlin, p 481Google Scholar
  66. 66.
    Vinogradov AP (1953) The elementary chemical composition of marine organisms. Sears Foundation for Marine Research, New HavenGoogle Scholar
  67. 67.
    Weber JN (1969) The incorporation of magnesium into the skeletal calcites of echinoderms. Am J Sci 267:537–566CrossRefGoogle Scholar
  68. 68.
    Lipps JH (1970) Plankton evolution. Evolution 24:1–21CrossRefGoogle Scholar
  69. 69.
    Comperse EL, Bates JM (1973) Determination of calcite: aragonite ratios in mollusc shells by infrared spectra. Limnol Oceanogr 18:326–331CrossRefGoogle Scholar
  70. 70.
    Wilkinson BH (1979) Biomineralization, paleoceanography, and the evolution of calcareous marine organisms. Geology 7:524–527ADSCrossRefGoogle Scholar
  71. 71.
    Zhuravlev AY, Wood RA (2008) Eve of biomineralization: controls on carbonate mineralogy. Geology 36:923–926CrossRefGoogle Scholar
  72. 72.
    Zhuravlev AY, Wood RA (2009) Controls on carbonate skeletal mineralogy: global CO2 evolution and mass extinctions. Geology 37:1123–1126CrossRefGoogle Scholar
  73. 73.
    de Vargas C, Aubry M-P, Probert I, Young J (2007) In: Thierstein HR, Young JR (eds) Coccolithophores – from molecular processes to global impact. Springer, Berlin, p 251Google Scholar
  74. 74.
    Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492ADSCrossRefGoogle Scholar
  75. 75.
    Bates NR (2007) Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. J Geophys Res 112:C09013. doi:10.1029/2006JC003759CrossRefGoogle Scholar
  76. 76.
    Bates NR, Peters AJ (2007) The contribution of atmospheric acid deposition to ocean acidification in the subtropical North Atlantic Ocean. Mar Chem 107:547–558CrossRefGoogle Scholar
  77. 77.
    Chung SN, Lee K, Feely RA, Sabine CL, Millero FJ, Wanninkhof R, Bullister JL, Key RM, Peng T-H (2003) Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry. Glob Biogeochem Cycles 17:1093ADSCrossRefGoogle Scholar
  78. 78.
    Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J et al (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366ADSCrossRefGoogle Scholar
  79. 79.
    Sabine CL, Feely RA (2007) The oceanic sink for carbon dioxide. In: Reay D, Hewitt N, Grace J, Smith K (eds) Greenhouse gas sinks. CABI, Oxfordshire, pp 31–49CrossRefGoogle Scholar
  80. 80.
    Santana-Casiano JM, Gonzalez-Davila M, Rueda MJ, Llinas O, Gonzalez-Davila EF (2007) The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. Glob Biogeochem Cycles 21:GB1015. doi:10.1029/2006GB002788ADSCrossRefGoogle Scholar
  81. 81.
    Watson AJ, Schuster U, Bakker DCE, Bates NR, Corbière A, González-Dávila M, Friedrich T, Hauck J, Heinze C, Johannessen T, Körtzinger A, Metzl N, Olafsson J, Olsen A, Oschlies A, Padin XA, Pfeil B, Santana-Casiano JM, Steinhoff T, Telszewski M, Rios AF, Wallace DWR, Wanninkhof R (2009) Tracking the variable North Atlantic sink for atmospheric CO2. Science 326:1391–1393ADSCrossRefGoogle Scholar
  82. 82.
    Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Soc USA 106:12235–12240ADSCrossRefGoogle Scholar
  83. 83.
    Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35:L19609, 5 pp, doi:10.1029/2008GL035072Google Scholar
  84. 84.
    Gehlen M, Gangstø R, Schneider B, Bopp L, Aumont O, Ethe C (2007) The fate of pelagic CaCO3 production in a high CO2 ocean: a model study. Biogeosciences 4:505–519ADSCrossRefGoogle Scholar
  85. 85.
    Feely RA, Byrne RH, Acker JG, Betzer PR, Chen CTA et al (1988) Winter summer variations of calcite and aragonite saturation in the northeast Pacific. Mar Chem 25:227–241CrossRefGoogle Scholar
  86. 86.
    Bates NR, Mathis JT, Cooper L (2009) The effect of ocean acidification on biologically induced seasonality of carbonate mineral saturation states in the Western Arctic Ocean. J Geophys Res Oceans 114:C11007, doi:10.1029/2008JC004862Google Scholar
  87. 87.
    Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–1100ADSCrossRefGoogle Scholar

Books and Reviews

  1. Feely RA, Fabry VJ, Dickson AG, Gattuso J-P, Bijma J, Riebesell U, Doney S, Turley C, Saino T, Lee K, Anthony K, and Kleypas J (2010) An international observational network for ocean acidification, OceanObs white paper (
  2. Houghton JT, Ding Y, Griggs DJ, Noger M, van der Linden PJ, Xiaosu D (2001) Climate change 2001: the scientific basis. In: Contrinbution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change 2001. Cambridge University Press, Cambridge, 944 pGoogle Scholar
  3. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of St. Petersburg Workshop, FL, sponsored by NSF, NOAA, and U.S. Geological Survey, 88 pGoogle Scholar
  4. Schubert R, Schellnhuber H-J, Buchmann N, Epiney A, Grieβhammer R, Kulessa M, Messner D, Rahmstorf S, Schmid J (2006) The future oceans – warming up, rising high, turning sour. German Advisor Council on global change, Special Report, Berlin, 110 pGoogle Scholar
  5. Zeebe RE, Zachos JC, Caldeira K, Tyrrell T (2008) Oceans: carbon emissions and acidification. Science (Perspectives) 321:51–52Google Scholar


  1. European geosciences union position statement on ocean acidification
  2. JSOST (Joint Subcommittee on Ocean Science and Technology; National Science and Technology Council).
  3. National oceanic and atmospheric administration ocean acidification website.
  4. NSTC Joint subcommittee on ocean science and technology (2007) Charting the course for ocean science in the United States for the next decade, An ocean research priorities plan and implementation strategy, 26 Jan 2007, 84 pGoogle Scholar
  5. Ocean Carbon and Biogeochemistry (OCB). and
  6. The Ocean Acidification Network.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Ocean and Earth Science, National Oceanography CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations