Intraoperative Neurophysiology Monitoring

  • Pawel P. Jankowski
  • Richard A. O’Brien
  • G. Bryan Cornwall
  • William R. Taylor


Intraoperative neurophysiology monitoring (IONM) provides valuable adjunctive information to the surgical team enhancing their understanding of the patient’s neuroanatomy with the goal of improving patient outcomes and reducing complications. This chapter discusses the roles of specific IONM modalities in minimally invasive spine surgery, further explaining the relative strengths and weaknesses of each modality, and anesthesia requirements when using IONM. The role of IONM in the placement of percutaneous pedicle screws and the far lateral approach to the lumbar spine are described.


Nerve Root Pedicle Screw Psoas Muscle Transforaminal Lumbar Interbody Fusion Pedicle Screw Placement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McAfee PC, Phillips FM, Andersson G, Buvenenadran A, Kim CW, Lauryssen C, et al. Minimally invasive spine surgery. Spine. 2010;35(26 Suppl):S271–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35(26 Suppl):S368–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Galloway GM, Nuwer MN, Lopez JR, Zamel KM. Intraoperative neurophysiologic monitoring. Cambridge: Cambridge University Press; 2010.CrossRefGoogle Scholar
  4. 4.
    Owen JH, Padberg AM, Spahr-Holland L, Bridwell KH, Keppler L, Steffee AD. Clinical correlation between degenerative spine disease and dermatomal somatosensory-evoked potentials in humans. Spine. 1991;16(6 Suppl):S201–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Sutter M, Eggspuehler A, Muller A, Dvorak J. Multimodal intraoperative monitoring: an overview and proposal of methodology based on 1,017 cases. Eur Spine J. 2007;16 Suppl 2:S153–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27(4):E6.PubMedCrossRefGoogle Scholar
  7. 7.
    Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg. 2007;15(9):549–60.PubMedGoogle Scholar
  8. 8.
    Buvanendran A, Thillainathan V. Preoperative and postoperative anesthetic and analgesic techniques for minimally invasive surgery of the spine. Spine. 2010;35(26 Suppl):S274–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Pajewski TN, Arlet V, Phillips LH. Current approach on spinal cord monitoring: the point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur Spine J. 2007;16 Suppl 2:S115–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010;111(1):110–9.PubMedGoogle Scholar
  11. 11.
    Calancie B, Molano MR. Alarm criteria for motor-evoked potentials: what’s wrong with the “presence-or-absence” approach? Spine. 2008;33(4):406–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Lyon R, Lieberman JA, Feiner J, Burch S. Relative efficacy of transcranial motor evoked potentials, mechanically-elicited electromyography, and evoked EMG to assess nerve root function during sustained retraction in a porcine model. Spine. 2009;34(16):E558–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Costa P, Bruno A, Bonzanino M, Massaro F, Caruso L, Vincenzo I, et al. Somatosensory- and motor-evoked potential monitoring during spine and spinal cord surgery. Spinal Cord. 2007;45(1):86–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine. 2004;29(6):677–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Calancie B, Lebwohl N, Madsen P, Klose KJ. Intraoperative evoked EMG monitoring in an animal model. A new technique for evaluating pedicle screw placement. Spine. 1992;17(10):1229–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14(1):31–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Ozgur BM, Berta S, Khiatani V, Taylor WR. Automated intraoperative EMG testing during percutaneous pedicle screw placement. Spine J. 2006;6(6):708–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Rodgers WB, Cornwall GB, Howell KM, Cohen BA. Safety of XLIF afforded by automated neurophysiology monitoring with neuroVision. In: Goodrich JA, Volcan IJ, editors. eXtreme Lateral Interbody Fusion (XLIF). St. Louis: QMP—Quality Medical Publishing, Inc; 2008. p. 105–15.Google Scholar
  20. 20.
    Nash Jr CL, Lorig RA, Schatzinger LA, Brown RH. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res. 1977;126:100–5.PubMedGoogle Scholar
  21. 21.
    Dawson EG, Sherman JE, Kanim LE, Nuwer MR. Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine. 1991;16(8 Suppl):S361–4.PubMedGoogle Scholar
  22. 22.
    Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Keith RW, Stambough JL, Awender SH. Somatosensory cortical evoked potentials: a review of 100 cases of intraoperative spinal surgery monitoring. J Spinal Disord. 1990;3(3):220–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Calancie B, Harris W, Broton JG, Alexeeva N, Green BA. “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg. 1998;88(3):457–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Weinzierl MR, Reinacher P, Gilsbach JM, Rohde V. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev. 2007;30(2):109–16.PubMedCrossRefGoogle Scholar
  26. 26.
    Ginsburg HH, Shetter AG, Raudzens PA. Postoperative paraplegia with preserved intraoperative somatosensory evoked potentials. Case report. J Neurosurg. 1985;63(2):296–300.PubMedCrossRefGoogle Scholar
  27. 27.
    DiCindio S, Theroux M, Shah S, Miller F, Dabney K, Brislin RP, et al. Multimodality monitoring of transcranial electric motor and somatosensory-evoked potentials during surgical correction of spinal deformity in patients with cerebral palsy and other neuromuscular disorders. Spine. 2003;28(16):1851–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Krassioukov AV, Sarjeant R, Arkia H, Fehlings MG. Multimodality intraoperative monitoring during complex lumbosacral procedures: indications, techniques, and long-term follow-up review of 61 consecutive cases. J Neurosurg Spine. 2004;1(3):243–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Paradiso G, Lee GY, Sarjeant R, Hoang L, Massicotte EM, Fehlings MG. Multimodality intraoperative neurophysiologic monitoring findings during surgery for adult tethered cord syndrome: analysis of a series of 44 patients with long-term follow-up. Spine. 2006;31(18):2095–102.PubMedCrossRefGoogle Scholar
  30. 30.
    Kelleher MO, Tan G, Sarjeant R, Fehlings MG. Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine. 2008;8(3):215–21.PubMedCrossRefGoogle Scholar
  31. 31.
    Quraishi NA, Lewis SJ, Kelleher MO, Sarjeant R, Rampersaud YR, Fehlings MG. Intraoperative multimodality monitoring in adult spinal deformity: analysis of a prospective series of one hundred two cases with independent evaluation. Spine. 2009;34(14):1504–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Limbrick DD, Wright NM. Verification of nerve root decompression during minimally-invasive lumbar microdiskectomy: a practical application of surgeon-driven evoked EMG. Minim Invasive Neurosurg. 2005;48:1–5.CrossRefGoogle Scholar
  33. 33.
    Glassman SD, Dimar JR, Puno RM, Johnson JR, Shields CB, Linden RD. A prospective analysis of intraoperative electromyographic monitoring of pedicle screw placement with computed tomographic scan confirmation. Spine. 1995;20(12):1375–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Toleikis JR, Skelly JP, Carlvin AO, Toleikis SC, Bernard TN, Burkus JK, et al. The usefulness of electrical stimulation for assessing pedicle screw placements. J Spinal Disord. 2000;13(4):283–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Bose B, Wierzbowski LR, Sestokas AK. Neurophysiologic monitoring of spinal nerve root function during instrumented posterior lumbar spine surgery. Spine. 2002;27(13):1444–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Schulze CJ, Munzinger E, Weber U. Clinical relevance of accuracy of pedicle screw placement. A computed tomographic-supported analysis. Spine. 1998;23(20):2215–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Gorek JE, Rolfe KW, Idler C. Minimally invasive surgery of the spine: less is more. Semin Spine Surg. 2011;23(1):2–8.CrossRefGoogle Scholar
  38. 38.
    Yang BP, Wahl MM, Idler CS. Percutaneous lumbar pedicle screw placement aided by computer-assisted fluoroscopy-based navigation: perioperative results of a prospective, comparative, multicenter study. Spine. 2012;37(24):2055–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Foley KT, Simon DA, Rampersaud YR. Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine. 2001;26(4):347–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine. 2000;25(20):2637–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Shin BJ, James AR, Njoku IU, Hartl R. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine. 2012;17(2):113–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21(2):247–55.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Youssef JA, Salas VA. Surgeon-interpreted intra-operative electromyograph (EMG) versus conventional EMG pedicle screw testing—a prospective comparison. US Musculoskelet Rev. 2008;1(2):37–40.Google Scholar
  44. 44.
    Ringel F, Stuer C, Reinke A, Preuss A, Behr M, Auer F, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine. 2012;37(8):E496–501.PubMedCrossRefGoogle Scholar
  45. 45.
    Bindal RK, Ghosh S. Intraoperative electromyography monitoring in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2007;6(2):126–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Bergey DL, Villavicencio AT, Goldstein T, Regan JJ. Endoscopic lateral transpsoas approach to the lumbar spine. Spine. 2004;29(15):1681–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Pimenta L, Schaffa TL. Lateral endoscopic transpsoas retroperitoneal approach for lumbar spine surgery. Paper presented at the VIII Brazilian Spine Society Meeting. Belo Horizonte, Minas Gerais, Brazil 2001; 2001.Google Scholar
  48. 48.
    Pimenta L, Schaffa TL. Surgical technique: extreme lateral interbody fusion. In: Goodrich JA, Volcan IJ, editors. eXtreme Lateral Interbody Fusion (XLIF®). 1st ed. St. Louis: Quality Medical Publishing; 2008. p. 87–104.Google Scholar
  49. 49.
    Rodgers WB, Gerber EJ, Rodgers JA. Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine. 2010;35(26 Suppl):S355–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36(1):26–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine. 2010;35(26 Suppl):S302–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Dakwar E, Vale FL, Uribe JS. Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine. 2011;14(2):290–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Moro T, Kikuchi S, Konno S, Yaginuma H. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine. 2003;28(5):423–8.PubMedGoogle Scholar
  54. 54.
    Jahangiri FR, Sherman JH, Holmberg A, Louis R, Elias J, Vega-Bermudez F. Protecting the genitofemoral nerve during direct/extreme lateral interbody fusion (DLIF/XLIF) procedures. Am J Electroneurodiagnostic Technol. 2010;50(4):321–35.PubMedGoogle Scholar
  55. 55.
    Smith WD, Christian G, Serrano S, Malone KT. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci. 2012;19(5):673–80.PubMedCrossRefGoogle Scholar
  56. 56.
    Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28(3):E8.PubMedCrossRefGoogle Scholar
  57. 57.
    Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine. 2010;35(26 Suppl):S322–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Anand N, Hamilton JF, Perri B, Miraliakbar H, Goldstein T. Cantilever TLIF with structural allograft and RhBMP2 for correction and maintenance of segmental sagittal lordosis: long-term clinical, radiographic, and functional outcome. Spine. 2006;31(20):E748–53.PubMedCrossRefGoogle Scholar
  59. 59.
    Jimenez JC, Sani S, Braverman B, Deutsch H, Ratliff JK. Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. J Neurosurg Spine. 2005;3(2):92–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Keim RJ. Remote monitoring of evoked potentials. Otolaryngol Head Neck Surg. 1985;93(1):23–7.PubMedGoogle Scholar
  61. 61.
    Krieger D, Sclabassi RJ. Real-time intraoperative neurophysiological monitoring. Methods. 2001;25(2):272–87.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pawel P. Jankowski
    • 1
  • Richard A. O’Brien
    • 2
  • G. Bryan Cornwall
    • 3
  • William R. Taylor
    • 4
  1. 1.Department of NeurosurgeryUniversity of California San DiegoSan DiegoUSA
  2. 2.Impulse Monitoring, Inc.ColumbiaUSA
  3. 3.Clinical Operations and Research, NuVasive, Inc.San DiegoUSA
  4. 4.Division of Neurosurgery, Department of SurgeryUC San Diego Health SystemLa JollaUSA

Personalised recommendations