Cross-Layer Control of Semitransparent Optical Networks Under Physical Parameter Uncertainty

  • Guido Maier
  • Eva Marìn
  • Marco Quagliotti
  • Walter Erangoli
  • Giovanni Tamiri
  • Marcelo Yannuzzi
  • Xavier Masip
  • René Serral-Gracià
Part of the Optical Networks book series (OPNW, volume 15)


This chapter deals with the routing and wavelength assignment and regenerator placement (RWARP) in semitransparent optical networks. In particular, it focuses on semitransparent network dimensioning and control, exploiting a cross-layer approach. The chapter describes the physical model adopted and the deterministic RWARP algorithm proposed for the dimensioning phase, computing the necessary resources of the network. Moreover the deterministic algorithm and a new RWA algorithm based on prediction concepts are proposed to analyze the network response in different conditions, in terms of parameter values of the systems and offered traffic. Results of this analysis show that the deterministic approach performs better in case of perfect knowledge of the impairment parameters, while the predictive one outperforms the former in case of imperfect knowledge, which is usually the case in practical settings.


Control Plane Amplify Spontaneous Emission Wavelength Assignment Dynamic Traffic Candidate Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lavigne B et al (2007) Method for the determination of a quality-of-transmission estimator along lightpaths of partially transparent networks. In: Proceedings of ECOC 2007, VDE Verlag, vol 3, Berlin, Sep 2007, pp 287–288Google Scholar
  2. 2.
    Pointurier Y et al (2007) Analysis of blocking probability in noise and crosstalk impaired all-optical networks. In: Proceedings of IEEE INFOCOM 2007, Anchorage, USAGoogle Scholar
  3. 3.
    Pachnicke S et al (2006) Physically constrained routing in 10Gb/s DWDM networks including fiber non linearities and polarization effects. IEEE/OSA J Lightwave Tech 24(9): 3418–3426Google Scholar
  4. 4.
    Gagnaire M, Al Zahr S (2009) Impairment-aware routing and wavelength assignment in translucent networks: state of the art. IEEE Commun Mag 47(5):55–61CrossRefGoogle Scholar
  5. 5.
    Azodolmolky S et al (2009) A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks. Comput Netw 53(7), Elsevier, ISSN: 1389–1286Google Scholar
  6. 6.
    Vijaya Saradhi C, Subramaniam S (2009) Physical layer impairment aware routing (PLIAR) in WDM optical networks: issues and challenges. IEEE Commun Surv Tutorials 11(4):109–130CrossRefGoogle Scholar
  7. 7.
    Yang X, Ramamurthy B (2005) Dynamic routing in translucent WDM optical networks the intradomain case. IEEE/OSA J Lightwave Technol 23(3):955–971CrossRefGoogle Scholar
  8. 8.
    Personick SD (1973) Receiver design for digital fiber optic communication systems, I. Bell Syst Tech J 52(6):843–874Google Scholar
  9. 9.
    Kulkarni P et al (2005) Benefits of Q-factor based routing in WDM metro networks. In: Proceedings of ECOC 2005, Glasgow, UKGoogle Scholar
  10. 10.
    Ezzahdi AM et al (2006) LERP a quality of transmission dependent heuristic for routing and wavelength assignment in hybrid WDM networks. In: Proceedings of ICCCN 2006, Arlington, VA, USAGoogle Scholar
  11. 11.
    Friskney R et al (2002) Link-based photonic path performance prediction and control. In: Proceedings of ECOC 2002, Copenhagen, DKGoogle Scholar
  12. 12.
    Penninckx D et al (2003) New physical analysis of 10 Gb/s transparent optical networks. IEEE Photonics Technol Lett 15(5):778–780Google Scholar
  13. 13.
    Zami T et al (2008) The relevant impact of the physical parameters uncertainties when dimensioning an optical core transparent network. In: Proceedings of ECOC 2008, Brussels, BE, September 2008Google Scholar
  14. 14.
    Leplingard F et al (2009) Interest of an adaptive margin for the quality of transmission estimation for lightpath establishment. In: Proceedings of OFC 2009, San Diego, California, Mar 2009Google Scholar
  15. 15.
    Politi C et al (2007) Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function. IEEE Commun Mag 45(2):40–47Google Scholar
  16. 16.
    Yannuzzi M, Quagliotti M, Maier G, Marin-Tordera E, Masip-Bruin X, Sanchez-Lopez S, Sole-Pareta J, Erangoli W, Tamiri G (2009) Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information. In: Proceedings of the ONDM 2009, Braunschweig, Germany, Feb 2009Google Scholar
  17. 17.
    Deliverable D2.1 of Nobel Project, Phase 2, “Preliminary Report on Multilayer Traffic Engineering and Resilience Mechanism” (A2.1 part)Google Scholar
  18. 18.
    Yang X et al (2005) Dynamic routing in translucent WDM optical networks the intradomain case. IEEE/OSA J Lightwave Tech 23(3):955–971, Mar 2005Google Scholar
  19. 19.
    Marín-Tordera E et al (2007) MINCOD-MTD: a RWA algorithm in semi-transparent optical networks. In: Proceedings of ECOC 2007, Berlin, GEGoogle Scholar
  20. 20.
    Strand J et al (2005) Impairments and other constraints on optical layer routing – RFC4054, May 2005Google Scholar
  21. 21.
    Castoldi P et al (2007) Centralized vs. distributed approaches for encompassing physical impairments in transparent optical networks. In: Proceedings of ONDM 2007, Athens, GRGoogle Scholar
  22. 22.
    Marín-Tordera E et al (2006) The prediction-based routing in optical transport networks. Comp Commun Journal, Elsevier, 19(7):865–878Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guido Maier
    • 1
  • Eva Marìn
    • 2
  • Marco Quagliotti
    • 3
  • Walter Erangoli
    • 4
  • Giovanni Tamiri
    • 5
  • Marcelo Yannuzzi
    • 2
  • Xavier Masip
    • 2
  • René Serral-Gracià
    • 2
  1. 1.Politecnico di Milano, Dipartimento di ElettronicaInformazione e Bioingegneria (DEIB)MilanoItaly
  2. 2.Advanced Network Architectures Lab (CRAAX), UPCVilanova y la GeltrùSpain
  3. 3.Telecom ItaliaTorinoItaly
  4. 4.Formerly with Politecnico di Milano, DEI; now with ICT ConsultingMilanoItaly
  5. 5.Formerly with Politecnico di Milano, DEI; now free lance consultantMilanoItaly

Personalised recommendations