Skip to main content

Biology of Bone Cancer Pain

  • Chapter
Metastatic Bone Disease

Abstract

Bone cancer pain is a complex process with many potential targets for therapeutic intervention. As pain is the most common presenting symptom in patients with skeletal metastases and is directly proportional to the patient’s quality of life, clinical advancements in the treatment of bone cancer pain are of the utmost importance. Research targeting pain-related cytokines, anti-osteoclastic medications, and ion channels has shown significant clinical progress in the treatment of cancer-related bone pain. With continued efforts into these and other therapeutic strategies, we hope to continue to improve the quality of life of those patients suffering with bone cancer pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci. 2006;7(10):797–809.

    Article  CAS  PubMed  Google Scholar 

  2. Mercadante S, Fulfaro F. Management of painful bone metastases. Curr Opin Oncol. 2007;19(4):308–14.

    Article  PubMed  Google Scholar 

  3. Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundam Clin Pharmacol. 2011;25(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  4. Mach DB, Rogers SD, Sabino MC, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–66.

    Article  CAS  PubMed  Google Scholar 

  5. Martin CD, Jimenez-Andrade JM, Ghilardi JR, Mantyh PW. Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain. Neurosci Lett. 2007;427(3):148–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104(51):20151–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yoneda T, Hata K, Nakanishi M, et al. Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain. Bone. 2011;48(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  8. Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther. 2012;14(3):R101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yasui M, Shiraishi Y, Ozaki N, et al. Nerve growth factor and associated nerve sprouting contribute to local mechanical hyperalgesia in a rat model of bone injury. Eur J Pain. 2012;16(7):953–65.

    Article  CAS  PubMed  Google Scholar 

  10. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Schwei MJ, Honore P, Rogers SD, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999;19(24):10886–97.

    CAS  PubMed  Google Scholar 

  13. Sabino MA, Mantyh PW. Pathophysiology of bone cancer pain. J Support Oncol. 2005;3(1):15–24.

    CAS  PubMed  Google Scholar 

  14. Schmidt BL, Hamamoto DT, Simone DA, Wilcox GL. Mechanism of cancer pain. Mol Interv. 2010;10(3):164–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jimenez-Andrade JM, Bloom AP, Stake JI, et al. Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. J Neurosci. 2010;30(44):14649–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yanagisawa Y, Furue H, Kawamata T, et al. Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord. Mol Pain. 2010;6:38.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wang XW, Hu S, Mao-Ying QL, et al. Activation of c-jun N-terminal kinase in spinal cord contributes to breast cancer induced bone pain in rats. Mol Brain. 2012;5:21.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mantyh WG, Jimenez-Andrade JM, Stake JI, et al. Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience. 2010;171(2):588–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. McKelvey L, Shorten GD, O'Keeffe GW. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. J Neurochem. 2013;124(3):276–89.

    Article  CAS  PubMed  Google Scholar 

  20. Sevcik MA, Ghilardi JR, Peters CM, et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain. 2005;115(1–2):128–41.

    Article  CAS  PubMed  Google Scholar 

  21. Warrington RJ, Lewis KE. Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis. Cancer Immunol Immunother. 2011;60(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  22. Jimenez-Andrade JM, Ghilardi JR, Castaneda-Corral G, Kuskowski MA, Mantyh PW. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain. 2011;152(11):2564–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hans G, Deseure K, Adriaensen H. Endothelin-1-induced pain and hyperalgesia: a review of pathophysiology, clinical manifestations and future therapeutic options. Neuropeptides. 2008;42(2):119–32.

    Article  CAS  PubMed  Google Scholar 

  24. Peters CM, Lindsay TH, Pomonis JD, et al. Endothelin and the tumorigenic component of bone cancer pain. Neuroscience. 2004;126(4):1043–52.

    Article  CAS  PubMed  Google Scholar 

  25. Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci. 2001;2(2):83–91.

    Article  CAS  PubMed  Google Scholar 

  26. Patil SB, Brock JH, Colman DR, Huntley GW. Neuropathic pain- and glial derived neurotrophic factor-associated regulation of cadherins in spinal circuits of the dorsal horn. Pain. 2011;152(4):924–35.

    Article  CAS  PubMed  Google Scholar 

  27. Premkumar LS. Targeting TRPV1 as an alternative approach to narcotic analgesics to treat chronic pain conditions. AAPS J. 2010;12(3):361–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. White JP, Urban L, Nagy I. TRPV1 function in health and disease. Curr Pharm Biotechnol. 2011;12(1):130–44.

    Article  CAS  PubMed  Google Scholar 

  29. Brown DC, Iadarola MJ, Perkowski SZ, et al. Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology. 2005;103(5):1052–9.

    Article  PubMed  Google Scholar 

  30. Ghilardi JR, Rohrich H, Lindsay TH, et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci. 2005;25(12):3126–31.

    Article  CAS  PubMed  Google Scholar 

  31. Clohisy DR, Ramnaraine ML. Osteoclasts are required for bone tumors to grow and destroy bone. J Orthop Res. 1998;16(6):660–6.

    Article  CAS  PubMed  Google Scholar 

  32. Roudier MP, Bain SD, Dougall WC. Effects of the RANKL inhibitor, osteoprotegerin, on the pain and histopathology of bone cancer in rats. Clin Exp Metastasis. 2006;23(3–4):167–75.

    Article  CAS  PubMed  Google Scholar 

  33. Lamoureux F, Moriceau G, Picarda G, Rousseau J, Trichet V, Redini F. Regulation of osteoprotegerin pro- or anti-tumoral activity by bone tumor microenvironment. Biochim Biophys Acta. 2010;1805(1):17–24.

    CAS  PubMed  Google Scholar 

  34. Saad F, Mulders P. Bisphosphonate anticancer activity in prostate cancer and other genitourinary cancers. Anticancer Agents Med Chem. 2012;12(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  35. Diel IJ, Kurth AH, Sittig HB, et al. Bone pain reduction in patients with metastatic breast cancer treated with ibandronate-results from a post-marketing surveillance study. Support Care Cancer. 2010;18(10):1305–12.

    Article  PubMed  Google Scholar 

  36. Saad F, Eastham J. Zoledronic acid improves clinical outcomes when administered before onset of bone pain in patients with prostate cancer. Urology. 2010;76(5):1175–81.

    Article  PubMed  Google Scholar 

  37. Broom R, Du H, Clemons M, et al. Switching breast cancer patients with progressive bone metastases to third-generation bisphosphonates: measuring impact using the functional assessment of cancer therapy-bone pain. J Pain Symptom Manage. 2009;38(2):244–57.

    Article  CAS  PubMed  Google Scholar 

  38. Namazi H. Zoledronic acid and survival in patients with metastatic bone disease from lung cancer and elevated markers of osteoclast activity: a novel molecular mechanism. J Thorac Oncol. 2008;3(8):943–4.

    Article  PubMed  Google Scholar 

  39. Zhu M, Liang R, Pan LH, et al. Zoledronate for metastatic bone disease and pain: a meta-analysis of randomized clinical trials. Pain Med. 2013;14(2):257–64.

    Article  PubMed  Google Scholar 

  40. Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–9.

    Article  CAS  PubMed  Google Scholar 

  41. Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ford JA, Jones R, Elders A, et al. Denosumab for treatment of bone metastases secondary to solid tumours: systematic review and network meta-analysis. Eur J Cancer. 2013;49(2):416–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. O’Donnell MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Donnell, P.W., Clohisy, D.R. (2016). Biology of Bone Cancer Pain. In: Randall, R. (eds) Metastatic Bone Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5662-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5662-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5661-2

  • Online ISBN: 978-1-4614-5662-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics