Skip to main content

Biotargeting in Metastatic Bone Disease

  • Chapter
Metastatic Bone Disease

Abstract

Metastatic disease to bone in the setting of adenocarcinoma can be a devastating complication. It often leads to chronic pain, and limited mobility, and can cause significant disability for patients. In addition, many patients develop pathologic fractures which increase the risk of disability and lead to significant morbidity and mortality. Metastatic disease also puts patients at risk for hypercalcemia which can cause weakness, nausea, anorexia, confusion, dehydration, and constipation. Increased levels of circulating calcium also impair renal function and cause mental dysfunction. The receptor activator of nuclear factor kappa-B ligand (RANKL) pathway has been well elucidated in the development of bone metastasis, and specific drugs such as zoledronic acid and denosumab, which target this pathway, have shown success in their prevention and treatment. However, a significant number of patients continue to develop additional bony disease while on these agents, indicating the necessity for the identification of additional biotargets for the management and prevention of metastatic bone disease.

Potential future biotargets for the treatment of metastatic bone disease are multifactorial. They include interleukins as well as members of the tumor necrosis factor alpha (TNF-α) family. In addition bone morphogenic proteins may play an important role in the development of bone metastasis. The Wnt signaling pathway has been implicated in a variety of different cancers, and may also be a potential target for the prevention of bony metastasis. Other potential targets include vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF). Other protein targets such as semaphorin-4D and plexin B1 may also be potential target. Elucidation of the role these potential targets play in the development of metastatic disease to bone, with further increase in our understanding of the mechanisms of how bony metastasis occurs, allows us to potentially develop additional therapeutic agents to prevent bony metastasis from occurring, thereby improving patients’ functionality and hopefully decreasing morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Cancer facts and figures 2014. Atlanta, GA: American Cancer Society; 2014.

    Google Scholar 

  2. Suva LJ. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappa B ligand pathway. Cancer Res. 2005;65(23):11001–9.

    Article  PubMed  Google Scholar 

  3. Suva LJ. Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone. 2014;61:176–85.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dirix LY. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res. 2004;10(21):7157–62.

    Article  PubMed  Google Scholar 

  5. Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33:28–37.

    Article  PubMed  Google Scholar 

  6. Coussens LM. The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol. 2006;13:118–37.

    PubMed  Google Scholar 

  7. Massague J. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436(7050):518–24.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sundquist J. Survival of cancer patients with rheumatoid arthritis: a follow-up stud in Sweden of patients hospitalized with rheumatoid arthritis 1 year before diagnosis of cancer. Rheumatology (Oxford). 2011;50(8):1513–8.

    Article  Google Scholar 

  9. Silman A. Influence of inflammatory polyarthritis on cancer incidence and survival: results from a community-based prospective study. Arthritis Rheum. 2007;56:790–8.

    Article  PubMed  Google Scholar 

  10. Lebecque S. T cell interleukin-17 induces stromal cells to produce pro-inflammatory cytokines and hematopoietic cytokines. J Exp Med. 1996;183(6):2593–603.

    Article  PubMed  Google Scholar 

  11. Mukherjee P. Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis. Breast Cancer Res. 2009;11(4):R56.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Mukherjee P. Collagen induced arthritis increases secondary metastasis in MMTV-PyVMT mouse model of mammary cancer. BMC Cancer. 2011;11(1):365.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Jackson A. IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res. 2008;10:R95.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Murkherjee P. Systemic neutralization of IL-17A significantly reduces breast cancer associated metastasis in arthritic mice by reducing CXCL12/SDF-1 expression in the metastatic niches. BMC Cancer. 2014;14:225.

    Article  Google Scholar 

  15. Zou W. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol. 2007;292(3):C987–95.

    PubMed  Google Scholar 

  16. Birchmeier W. Combined Wnt/B-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep. 2013;5(5):1214–27.

    Article  PubMed  Google Scholar 

  17. Hankinson O. Modulation of CXCR4, CXCL12, and tumor cell invasion potential in vitro by phytochemicals. J Oncol. 2009;2009:491985.

    PubMed Central  PubMed  Google Scholar 

  18. Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia. 2009;23(1):43–52.

    Article  PubMed  Google Scholar 

  19. Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996;271:12687–90.

    Article  PubMed  Google Scholar 

  20. Smith CA. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3:673–82.

    Article  PubMed  Google Scholar 

  21. Pan G. The receptor for the cytotoxic ligand TRAIL. Science. 1997;276:111–3.

    Article  CAS  PubMed  Google Scholar 

  22. Walczak H. THRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 1997;16:5386–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ekhardt SG. Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol. 2008;26(21):3621–30.

    Article  Google Scholar 

  24. Mendelson DS. Phase I, dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol. 2010;28(17):2839–46.

    Article  PubMed  Google Scholar 

  25. Blackhall F. Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(33):4442–51.

    Article  PubMed  Google Scholar 

  26. Blackhall F. Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol. 2010;28(9):1527–33.

    Article  PubMed  Google Scholar 

  27. Dougall WC. Combined therapy with the RANKL inhibitor RANK-Fc and rhApo2L/TRAIL/dulanermin reduces bone lesions and skeletal tumor burden in a model of breast cancer skeletal metastasis. Cancer Biol Ther. 2010;9(7):539–50.

    Article  PubMed  Google Scholar 

  28. Wagner U. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31:578–83.

    Article  PubMed  Google Scholar 

  29. Hamdy FC. Immunolocalization and messenger RNA expression of bone morphogenetic protein-6 in human benign and malignant prostatic tissue. Cancer Res. 1997;57:4427–31.

    CAS  PubMed  Google Scholar 

  30. Masuda H. Increased expression of bone morphogenetic protein-7 in bone metastatic prostate cancer. Prostate. 2003;54:268–74.

    Article  CAS  PubMed  Google Scholar 

  31. Dai J. Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res. 2005;65:8274–85.

    Article  CAS  PubMed  Google Scholar 

  32. Feeley BT. Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer. J Bone Miner Res. 2005;20:2189–99.

    Article  CAS  PubMed  Google Scholar 

  33. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.

    CAS  PubMed  Google Scholar 

  34. Schroder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004;341:19–39.

    Article  Google Scholar 

  35. Barrow JR. Ectodermal Wnt3/β-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 2003;17:394–409.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hall CL. Prostate cancer cells promote osteoblastic bone metastasis through Wnts. Cancer Res. 2005;65:7554–60.

    CAS  PubMed  Google Scholar 

  37. Dai J. Prostate cancer induces bone metastasis through wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res. 2008;68(14):5785–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sherman S. Thyroid carcinoma. Lancet. 2003;361:501–11.

    Article  PubMed  Google Scholar 

  39. Mureasm M. Bone metastases from differentiated thyroid carcinoma. Endoc Rel Cancer. 2008;15:37–49.

    Article  Google Scholar 

  40. Schoenberger J, Grimm D, Kossmehl P, Infanger M, Kurth E, Eilles C. Effects of PTK787/ZK222584, a tyrosine kinase inhibitor, on the growth of a poorly differentiated thyroid carcinoma: an animal study. Endocrinology. 2004;145:1031–8.

    Article  CAS  PubMed  Google Scholar 

  41. Soh EY, Eigelberger MS, Kim KJ, Wong MG, Young DM, Clark OH, Duh QY. Neutralizing vascular endothelial growth factor activity inhibits thyroid cancer in vivo. Surgery. 2000;128:1059–65.

    Article  CAS  PubMed  Google Scholar 

  42. US National Institutes of Health Clinical Trials. NCT00510640.

    Google Scholar 

  43. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28–39.

    Article  PubMed  Google Scholar 

  44. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.

    Article  CAS  PubMed  Google Scholar 

  45. Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, Liang J, Wakely Jr PE, Vasko VV, Saji M, Rittenberry J, Wei L, Arbogast D, Collamore M, Wright JJ, Grever M, Shah MH. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27(10):1675–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wells Jr SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Walker F, Abramowitz L, Benabderrahmane D, Duval X, Descatoire V, Hénin D, Lehy T, Aparicio T. Growth factor receptor expression in anal squamous lesions: modifications associated with oncogenic human papillomavirus and human immunodeficiency virus. Hum Pathol. 2009;40(11):1517–27.

    Article  CAS  PubMed  Google Scholar 

  48. Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1:2005.0010.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Fisher KE, Jani JC, Fisher SB, Foulks C, Hill CE, Weber CJ, Cohen C, Sharma J. Epidermal growth factor receptor overexpression is a marker for adverse pathologic features in papillary thyroid carcinoma. J Surg Res. 2013;185(1):217–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Rodríguez-Antona C, Pallares J, Montero-Conde C, Inglada-Pérez L, Castelblanco E, Landa I, Leskelä S, Leandro-García LJ, López-Jiménez E, Letón R, Cascón A, Lerma E, Martin MC, Carralero MC, Mauricio D, Cigudosa JC, Matias-Guiu X, Robledo M. Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocr Relat Cancer. 2010;17(1):7–16.

    Article  PubMed  Google Scholar 

  51. Ramadan S, Ugas M, Berwick R, Notay M, Cho H, Jerjes W, Giannoudis P. Spinal metastasis in thyroid cancer. Head Neck Oncol. 2012;4:39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Holting T, Siperstein AE, Clark OH, Duh QY. Epidermal growth factor (EGF)- and transforming growth factor a-stimulated invasion and growth of follicular thyroid cancer cells can be blocked by antagonism to the EGF receptor and tyrosine kinase in vitro. Eur J Endocrinol. 1995;132:229–35.

    Article  CAS  PubMed  Google Scholar 

  53. Gorgoulis V, Aninos D, Priftis C, Evagelopoulou C, Karameris A, Kanavaros P, Spandidos D. Expression of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in thyroid tumors in vivo. In Vivo. 1992;6:291–6.

    CAS  PubMed  Google Scholar 

  54. Hundahl S, Cady B, Cunnighan M, Mazzaferri E, McKee R, Shas J, Fremgen A, Stewart A, Hölzer S. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996. U.S. and German Thyroid Cancer Study Group. An American College of Surgeons Commission on Cancer Patient Care Evaluation Study. Cancer. 2000;89:202–17.

    Article  CAS  PubMed  Google Scholar 

  55. Bunone G, Vigneri P, Mariani L, Buto S, Pilotti S, Pierotti M, Bongarzone I. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol. 1999;155:1967–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Younes M, Yazici Y, Kim S, Jasser S, El-Naggar A, Myers J. Dual. epidermal growth factor receptor and vascular endothelial growth factor receptor inhibition with NVP-AEE788 for the treatment of aggressive follicular thyroid cancer. Clin Cancer Res. 2006;12(11 Pt 1):3425–34.

    Article  CAS  PubMed  Google Scholar 

  57. Wood SL, et al. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. 2014;40(4):558–66.

    Article  CAS  PubMed  Google Scholar 

  58. Sekine I, et al. Risk factors for skeletal-related events in patients with non-small cell lung cancer treated by chemotherapy. Lung Cancer. 2009;65(2):219–22.

    Article  PubMed  Google Scholar 

  59. Henry DH, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    Article  CAS  PubMed  Google Scholar 

  60. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Fernandez Vallone VB, et al. Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis. Clin Exp Metastasis. 2013;30(3):317–32.

    Article  PubMed  Google Scholar 

  62. Esposito M, Kang Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther. 2014;141(2):222–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Vicent S, et al. A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Cancer Res. 2008;68(7):2275–85.

    Article  CAS  PubMed  Google Scholar 

  64. McGrath EE. OPG/RANKL/RANK pathway as a therapeutic target in cancer. J Thorac Oncol. 2011;6(9):1468–73.

    Article  PubMed  Google Scholar 

  65. Isla D, et al. Zoledronic acid in lung cancer with bone metastases: a review. Expert Rev Anticancer Ther. 2013;13(4):421–6.

    Article  CAS  PubMed  Google Scholar 

  66. Peters S, Meylan E. Targeting receptor activator of nuclear factor-kappa b as a new therapy for bone metastasis in non-small cell lung cancer. Curr Opin Oncol. 2013;25(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  67. Scagliotti GV, et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. J Thorac Oncol. 2012;7(12):1823–9.

    Article  CAS  PubMed  Google Scholar 

  68. Lu X, Kang Y. Epidermal growth factor signalling and bone metastasis. Br J Cancer. 2010;102(3):457–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. D’Antonio C, et al. Bone and brain metastasis in lung cancer: recent advances in therapeutic strategies. Ther Adv Med Oncol. 2014;6(3):101–14.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Lin PP, Mirza AN, Lewis VO, Cannon CP, Tu SM, Tannir NM, Yasko AW. Patient survival after surgery for osseous metastases from renal cell carcinoma. J Bone Joint Surg Am. 2007;89(8):1794–801.

    Article  PubMed  Google Scholar 

  71. Yossepowitch O, Bianco Jr FJ, Eggener SE, Eastham JA, Scher HI, Scardino PT. The natural history of noncastrate metastatic prostate cancer after radical prostatectomy. Eur Urol. 2007;51(4):940–7.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Mellado B, Gascon P. Molecular biology of renal cell carcinoma. Clin Transl Oncol. 2006;8(10):706–10.

    Article  CAS  PubMed  Google Scholar 

  73. Patel PH, Chaganti RS, Motzer RJ. Targeted therapy for metastatic renal cell carcinoma. Br J Cancer. 2006;94(5):614–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Coppin C, Kollmannsberger C, Le L, Porzsolt F, Wilt TJ. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int. 2011;108(10):1556–63.

    Article  CAS  PubMed  Google Scholar 

  75. Mihaly Z, Sztupinszki Z, Surowiak P, Gyorffy B. A comprehensive overview of targeted therapy in metastatic renal cell carcinoma. Curr Cancer Drug Targets. 2012;12(7):857–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Advani SH. Targeting mTOR pathway: a new concept in cancer therapy. Ind J Med Paediatr Oncol. 2010;31(4):132–6.

    Article  CAS  Google Scholar 

  77. Molina AM, Motzer RJ, Heng DY. Systemic treatment options for untreated patients with metastatic clear cell renal cancer. Semin Oncol. 2013;40(4):436–43.

    Article  CAS  PubMed  Google Scholar 

  78. Weber KL, Doucet M, Price JE. Renal cell carcinoma bone metastasis: epidermal growth factor receptor targeting. Clin Orthop Relat Res. 2003;415(Suppl):S86–94.

    Article  PubMed  Google Scholar 

  79. Weber KL, Doucet M, Price JE, Baker C, Kim SJ, Fidler IJ. Blockade of epidermal growth factor receptor signaling leads to inhibition of renal cell carcinoma growth in the bone of nude mice. Cancer Res. 2003;63(11):2940–7.

    CAS  PubMed  Google Scholar 

  80. Joeckel E, Haber T, Prawitt D, Junker K, Hampel C, Thuroff JW, Roos FC, Brenner W. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor. Mol Cancer. 2014;13:42.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Ahmad SA, Liu W, Jung YD, Fan F, Reinmuth N, Bucana CD, Ellis LM. Differential expression of angiopoietin-1 and angiopoietin-2 in colon carcinoma. A possible mechanism for the initiation of angiogenesis. Cancer. 2001;92(5):1138–43.

    Article  CAS  PubMed  Google Scholar 

  82. Ahmad SA, Liu W, Jung YD, Fan F, Wilson M, Reinmuth N, Shaheen RM, Bucana CD, Ellis LM. The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Res. 2001;61(4):1255–9.

    CAS  PubMed  Google Scholar 

  83. Udani V, Santarelli J, Yung Y, Cheshier S, Andrews A, Kasad Z, Tse V. Differential expression of angiopoietin-1 and angiopoietin-2 may enhance recruitment of bone-marrow-derived endothelial precursor cells into brain tumors. Neurol Res. 2005;27(8):801–6.

    Article  CAS  PubMed  Google Scholar 

  84. Xie C, Schwarz EM, Sampson ER, Dhillon RS, Li D, O’Keefe RJ, Tyler W. Unique angiogenic and vasculogenic properties of renal cell carcinoma in a xenograft model of bone metastasis are associated with high levels of vegf-a and decreased ang-1 expression. J Orthop Res. 2012;30(2):325–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Conrotto P, Valdembri D, Corso S, Serini G, Tamagnone L, Comoglio PM, Bussolino F, Giordano S. Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood. 2005;105(11):4321–9.

    Article  CAS  PubMed  Google Scholar 

  86. Zhou H, Binmadi NO, Yang YH, Proia P, Basile JR. Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis. 2012;15:391.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, Takayanagi H. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17(11):1473–80.

    Article  CAS  PubMed  Google Scholar 

  88. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, Dispenzieri A, Kumar S, Clark RJ, Baris D, Hoover R, Rajkumar SV. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113(22):5412–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, Fonseca R, Rajkumar SV, Offord JR, Larson DR, Plevak ME, Therneau TM, Greipp PR. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21–33.

    Article  PubMed  Google Scholar 

  90. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, Greipp PR, Kyle RA, Gertz MA. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood. 2000;95(8):2630–6.

    CAS  PubMed  Google Scholar 

  92. Choi SJ, Oba Y, Gazitt Y, Alsina M, Cruz J, Anderson J, Roodman GD. Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest. 2001;108(12):1833–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Oyajobi BO, Franchin G, Williams PJ, Pulkrabek D, Gupta A, Munoz S, Grubbs B, Zhao M, Chen D, Sherry B, Mundy GR. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood. 2003;102(1):311–9.

    Article  CAS  PubMed  Google Scholar 

  94. Morgan GJ, Davies FE, Gregory WM, Cocks K, Bell SE, Szubert AJ, Navarro-Coy N, Drayson MT, Owen RG, Feyler S, Ashcroft AJ, Ross F, Byrne J, Roddie H, Rudin C, Cook G, Jackson GH, Child JA. National Cancer Research Institute Haematological Oncology Clinical Study Group First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet. 2010;376(9757):1989–99.

    Article  CAS  PubMed  Google Scholar 

  95. Morgan GJ, Davies FE, Gregory WM, Szubert AJ, Bell SE, Drayson MT, Owen RG, Ashcroft AJ, Jackson GH, Child JA. National Cancer Research Institute Haematological Oncology Clinical Studies Group. Effects of induction and maintenance plus long-term bisphosphonates on bone disease in patients with multiple myeloma: the Medical Research Council Myeloma IX Trial. Blood. 2012;19(23):5374–83.

    Article  Google Scholar 

  96. Webb SL, Edwards CM. Novel therapeutic targets in myeloma bone disease. Br J Pharmacol. 2014;171:3765.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, Langdahl BL, Reginster JY, Zanchetta JR, Wasserman SM, Katz L, Maddox J, Yang YC, Libanati C, Bone HG. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20.

    Article  CAS  PubMed  Google Scholar 

  98. O’Callaghan K, Lee L, Nguyen N, Hsieh MY, Kaneider NC, Klein AK, Sprague K, Van Etten RA, Kuliopulos A, Covic L. Targeting CXCR4 with cell-penetrating pepducins in lymphoma and lymphocytic leukemia. Blood. 2012;119(7):1717–25.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Beider K, Ribakovsky E, Abraham M, Wald H, Weiss L, Rosenberg E, Galun E, Avigdor A, Eizenberg O, Peled A, Nagler A. Targeting the CD20 and CXCR4 pathways in non-Hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin Cancer Res. 2013;19(13):3495–507.

    Article  CAS  PubMed  Google Scholar 

  100. Abdi J, Mutis T, Garssen J, Redegeld FA. Toll-like receptor (TLR)-1/2 triggering of multiple myeloma cells modulates their adhesion to bone marrow stromal cells and enhances bortezomib-induced apoptosis. PLoS One. 2014;9(5):e96608.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Abdi J, Qiu L, Chang H. Micro-RNAs, New performers in multiple myeloma bone marrow microenvironment. Biomark Res. 2014;2:10.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily E. Carmody MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cooper, A.R., Tyler, W., Carmody, E.E. (2016). Biotargeting in Metastatic Bone Disease. In: Randall, R. (eds) Metastatic Bone Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5662-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5662-9_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5661-2

  • Online ISBN: 978-1-4614-5662-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics