Path Planning for Autonomous Underwater Vehicles

  • Liam Paull
  • Sajad Saeedi
  • Howard LiEmail author


This chapter addresses the task of motion or path planning for an autonomous underwater vehicle (AUV). Once a map of the environment is built, and the vehicle has been able to localize itself, the high-level task of path planning must be achieved in order for the platform to complete its mission objectives.


Path Planning Configuration Space Autonomous Underwater Vehicle Cell Decomposition Visibility Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    LaValle S (2011) Motion planning. IEEE Robot Autom Mag 18(1):79–89Google Scholar
  2. 2.
    Gasparri A, B.K., Sukhatme G (2008) A framework for multi-robot node coverage in sensor networks. Ann Math Artif Intell 52:281–305Google Scholar
  3. 3.
    Gonzalez E, Gerlein E (2009) Bsa-cm: a multi-robot coverage algorithm. In: Web intelligence and intelligent agent technologies, 2009. WI-IAT ’09. IEEE/WIC/ACM international joint conferences, vol 2, pp 383–386, sept 2009Google Scholar
  4. 4.
    Choset H (2001) Coverage for robotics - a survey of recent results. Ann Math Artif Intell 31:113–126Google Scholar
  5. 5.
    Acar EU, Choset H (2002) Sensor-based coverage of unknown environments: incremental construction of morse decompositions. Int J Robot Res 21:345–367Google Scholar
  6. 6.
    Ron Wein JvdB, Halperin D (2008) Planning high-quality paths and corridors amidst obstacles. Int J Robot Res 27:1213–1231Google Scholar
  7. 7.
    Cai C, Ferrari S (2009) Information-driven sensor path planning by approximate cell decomposition. IEEE Trans Syst, Man, and Cybernetics - Part B: Cybernetics 39(3):672–689Google Scholar
  8. 8.
    Baek S, Lee TK, Se-Young OH, Ju K (2011) Integrated on-line localization, mapping and coverage algorithm of unknown environments for robotic vacuum cleaners based on minimal sensing. Adv Robot 25(13–14):1651–1673Google Scholar
  9. 9.
    Li Y, Chen H, Er MJ, Wang XM (2011) Coverage path planning for uavs based on enhanced exact cellular decomposition method. Mechatronics 21:876–885Google Scholar
  10. 10.
    Jin J, Tang L (2011) Coverage path planning on three-dimensional terrain for arable farming. J Field Robot 28(3):424–440Google Scholar
  11. 11.
    Oksanen T, Visala A (2009) Coverage path planning algorithms for agricultural field machines. J Field Robot 26(8):651–668Google Scholar
  12. 12.
    Warren C (1990) A technique for autonomous underwater vehicle route planning. IEEE J Oceanic Eng 15(3):199–204Google Scholar
  13. 13.
    Biggs J, Holderbaum W (2009) Optimal kinematic control of an autonomous underwater vehicle. IEEE Trans Automatic Contr 54(7):1623–1626Google Scholar
  14. 14.
    Yilmaz N, Evangelinos C, Lermusiaux P, Patrikalakis N (2008) Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE J Oceanic Eng 33(4):522–537Google Scholar
  15. 15.
    Binney J, Krause A, Sukhatme G (2010) Informative path planning for an autonomous underwater vehicle. In: IEEE international conference on robotics and automation (ICRA), May 2010, pp 4791–4796Google Scholar
  16. 16.
    Cheng CT, Fallahi K, Leung H, Tse C (2010) An auvs path planner using genetic algorithms with a deterministic crossover operator. In: IEEE international conference on robotics and automation (ICRA), May 2010, pp 2995–3000Google Scholar
  17. 17.
    Petres C, Pailhas Y, Patron P, Petillot Y, Evans J, Lane D (2007) Path planning for autonomous underwater vehicles. IEEE Trans Robot 23(2):331–341Google Scholar
  18. 18.
    Petillot Y, Tena Ruiz I, Lane D (2001) Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. IEEE J Oceanic Eng 26(2):240–251Google Scholar
  19. 19.
    Blanco M, Wilson P (2010) Autonomous underwater vehicle minimum-time navigation in a current field. In: OCEANS 2010, pp 1–4, Sept 2010Google Scholar
  20. 20.
    Kruger D, Stolkin R, Blum A, Briganti J (2007) Optimal auv path planning for extended missions in complex, fast-flowing estuarine environments. In: IEEE international conference on robotics and automation 2007, pp 4265–4270, April 2007Google Scholar
  21. 21.
    Smith RN, Chao Y, Li PP, Caron DA, Jones BH, Sukhatme GS (2010) Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int J Robot Res 29(12):1475–1497Google Scholar
  22. 22.
    Soulignac M (2011) Feasible and optimal path planning in strong current fields. IEEE Trans Robot 27(1):89–98Google Scholar
  23. 23.
    Alvarez A, Caiti A, Onken R (2004) Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J Oceanic Eng 29(2):418–429Google Scholar
  24. 24.
    Thompson D, Chien S, Chao Y, Li P, Cahill B, Levin J, Schofield O, Balasuriya A, Petillo S, Arrott M, Meisinger M (2010) Spatiotemporal path planning in strong, dynamic, uncertain currents. In: IEEE international conference on robotics and automation (ICRA) 2010, pp 4778–4783, May 2010Google Scholar
  25. 25.
    Stack J, Smith C (2003) Combining random and data-driven coverage planning for underwater mine detection. In: Proceedings of OCEANS 2003, vol 5, pp 2463–2468, Sept 2003Google Scholar
  26. 26.
    Fang C, Anstee S (2010) Coverage path planning for harbour seabed surveys using an autonomous underwater vehicle. In: OCEANS 2010 IEEE - Sydney, pp 1–8, May 2010Google Scholar
  27. 27.
    Choset H (2000) Coverage of known spaces: the boustrophedon cellular decomposition. Autonomous Robots 9:247–253Google Scholar
  28. 28.
    Kim A, Eustice R (2009) Toward auv survey design for optimal coverage and localization using the cramer rao lower bound. In: OCEANS 2009, pp 1–7, Oct 2009Google Scholar
  29. 29.
    Williams D (2010) On optimal auv track-spacing for underwater mine detection. In: IEEE international conference on robotics and automation (ICRA) 2010, pp 4755–4762, May 2010Google Scholar
  30. 30.
    Paull L, Saeedi S, Li H, Myers V (2010) An information gain based adaptive path planning method for an autonomous underwater vehicle using sidescan sonar. In: IEEE conference on automation science and engineering (CASE), pp 835–840, 2010Google Scholar
  31. 31.
    Lumelsky V, Stepanov A (1987) Path planning strategies for point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2:403–430Google Scholar
  32. 32.
    I Kamon ER, Rivlin E (1998) Tangentbug: A range-sensor based navigation algorithm. Int J Robot Res 17(9):934–953Google Scholar
  33. 33.
    Choset H, Burgard W, Hutchinson S, Kantor G, Kavraki LE, Lynch K, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementation. MIT Press, CambridgeGoogle Scholar
  34. 34.
    Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5:90–98Google Scholar
  35. 35.
    Koditschek DE, Rimon E (1990) Robot navigation functions on manifolds with boundary. Adv Appl Math 11:412–442Google Scholar
  36. 36.
    Barraquand J, Langlois B, Latombe C (1992) Numerical potential field techniques for robot path planning. IEEE Trans Man and Cybernetics 22:224–241Google Scholar
  37. 37.
    Latombe J (1991) Robot motion planning. Kluwer Academic Publishers, NorwellGoogle Scholar
  38. 38.
    Lozano-Perez T, Wesley M (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM 22(10):560–570Google Scholar
  39. 39.
    Aurenhammer F (1991) Voronoi diagrams a survey of a fundamental geometric structure. ACM Comput Surveys 23:345–405Google Scholar
  40. 40.
    Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580Google Scholar
  41. 41.
    Kuffner JJ, LaValle SM (2000) Rrt-connect: an efficient approach to single-query path planning. In: IEEE international conference on robotics and automation, pp 995–1001, 2000Google Scholar
  42. 42.
    Choset H (2000) Coverage of known spaces: the boustrophedon cellular decomposition. Autonomous Robots 9:247–253Google Scholar
  43. 43.
    Acar EU, Choset H, Rizzi AA, Atkar PN, Hull D (2002) Morse decompositions for coverage tasks. Int J Robotic Res 21(4):331–344Google Scholar
  44. 44.
    Szymczyk M, LaMothe A (2002) Mac game programming. Muska & Lipman/Premier-TradeGoogle Scholar
  45. 45.
    Srinivas S, Patnaik LM (1994) Genetic algorithms: a survey. IEEE Comput 27(6):17–26Google Scholar
  46. 46.
    Holland J (1945) Adaptation in natural and artificial systems. University of Michigan Press, Ann ArborGoogle Scholar
  47. 47.
    Li H, Yang S, Seto M (2009) Neural network based path planning for a multi-robot system with moving obstacles. IEEE Trans Syst, Man and Cybernetics, Part C - Appl Rev 39Google Scholar
  48. 48.
    Pehlivanoglu YV (2007) Path planning for autonomous uav via vibrational genetic algorithm. Aircraft Eng Aerospace Tech: Int J 79(8):532–539Google Scholar
  49. 49.
    Davis L (1991) Handbook on genetic algorithms. Van Nostrand Reinhold, New YorkGoogle Scholar
  50. 50.
    Zerr B, Fawcett J, Hopkin D (2009) Adaptive algorithm for sea mine classification. In: 3rd international conference & exhibition on underwater acoustic measurements: technologies & results, pp 319–326, 2009Google Scholar
  51. 51.
    Williams D, Groen J, Fox W (2011) A fast detection algorithm for autonomous mine countermeasures. In: NATO underwater research center, Nurc-fr-2011-006, Oct 2011Google Scholar
  52. 52.
    Chapple P (2002) Automated detection and classification in high-resolution sonar imagery for autonomous underwater vehicle operations. Dsto-gd-0537, Maritime operations division DSTO defence science and technology organisation, Dec 2002Google Scholar
  53. 53.
    Davies G, Signell E (2006) Espresso scientific user guide. In: NATO underwater research centre, Nurc-sp-2006-003, 2006Google Scholar
  54. 54.
    Grocholsky B (2002) Information-theoretic control of multiple sensor platforms. Ph.D. thesis, Australian Centre for Field Robotics, University of SydneyGoogle Scholar
  55. 55.
    Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn. McGraw Hill, New YorkGoogle Scholar
  56. 56.
    Fawcett J, Myers V, Hopkin D, Crawford A, Couillard M, Zerr B (2010) Multiaspect classification of sidescan sonar images: Four different approaches to fusing single-aspect information. IEEE J Oceanic Eng 35(4):863–876Google Scholar
  57. 57.
    Fawcett JA, Crawford A, Hopkin D, Myers V, Couillard M, Zerr B (2008) Multi-aspect computer-aided classification of the citadel trial side-scan sonar images. Drdc atlantic tm 2008-029, Defence R&D Canada - Atlantic, 2008Google Scholar
  58. 58.
    Bourque FA, Nguyen B (2011) Optimal sensor configurations for rectangular target detection. In: 9th IEEE international conference on control and automation (ICCA) 2011, pp 455–460, Dec 2011Google Scholar
  59. 59.
    Bays M, Shende A, Stilwell D, Redfield S (2011) A solution to the multiple aspect coverage problem. In: IEEE international conference on robotics and automation (ICRA) 2011, pp 1531–1537, May 2011Google Scholar
  60. 60.
    Nguyen B, Hopkin D, Yip H (2008) Autonomous underwater vehicles a transformation of mine counter-measure operations. Defense and Security Analysis 243:247–266Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.COBRA group Department of Electrical and Computer EngineeringUniversity of New BrunswickFrederictonCanada

Personalised recommendations