Bone Metastasis of Breast Cancer

  • Takae M. Brewer
  • Richard L. Theriault
  • Naoto T. Ueno


Bone is the most common site of metastasis for breast cancer. Bone metastasis significantly affects both quality of life and survival of the breast cancer patient. Clinically, complications secondary to bone metastasis include pain, pathologic fractures, spinal cord compression, and hypercalcemia of malignancy. Because bone metastasis is extremely common in patients with metastatic breast cancer, clinical management of bone metastases is an important and challenging aspect of treatment in the metastatic setting. The skeleton is a metabolically active organ system that undergoes continuous remodeling throughout life. A delicate balance of the bone-forming osteoblasts and bone-resorbing osteoclasts in the dynamic microenvironment of the skeleton maintains normal bone remodeling and integrity. The presence of metastatic lesions in bone disrupts the normal bone microenvironment and upsets the fine balance between the key components. The changes in the bone microenvironment then create a vicious cycle that further promotes bone destruction and tumor progression. Various therapeutic options are available for bone metastases of breast cancer, and treatment can be tailored for each patient and, often requires multiple therapeutic interventions. Commonly used modalities include local therapies such as surgery, radiation therapy and radiofrequency ablation (RFA) together with systemic therapies such as endocrine therapy, chemotherapy, monoclonal antibody-based therapy, bone-enhancing therapy and radioisotope therapy. Despite the use of various therapeutic modalities, bone metastases eventually become resistant to therapy, and disease progresses. In this chapter, we describe the clinical picture and biological mechanism of bone metastases in breast cancer. We also discuss known risk factors as well as detection and assessment of bone metastases. We present therapeutic options for bone metastasis using a multidisciplinary approach. Further, we describe future directions for bone metastasis management, focusing on novel bone-specific targeted therapies.


Bone Metastasis Mechanism of bone metastases Bone-targeted therapy Therapy Detection Assessment Resorption Cytokine  Receptor activator of Nuclear Factor-κB ligand (RANKL) Osteocystes Denosumab Integrin Chemotherapy 


  1. 1.
    Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249sGoogle Scholar
  2. 2.
    Gainford MC, Dranitsaris G, Clemons M (2005) Recent developments in bisphosphonates for patients with metastatic breast cancer. BMJ 330(7494):769–773Google Scholar
  3. 3.
    Scheid V, Buzdar AU, Smith TL et al (1986) Clinical course of breast cancer patients with osseous metastasis treated with combination chemotherapy. Cancer 58:2589–2593PubMedCrossRefGoogle Scholar
  4. 4.
    Plunkett TA, Smith P, Rubens RD (2000) Risk of complications from bone metastases in breast cancer: implications for management. Eur J Cancer 36:476–482PubMedCrossRefGoogle Scholar
  5. 5.
    Domchek SM, Younger J, Finkelstein DM et al (2000) Predictors of skeletal complications complications in patients with metastatic breast carcinoma. Cancer 89:363–368PubMedCrossRefGoogle Scholar
  6. 6.
    Sathiakumar N, Delzell E, Morrisey MA et al (2012) Mortality following bone metastasis and skeletal-related events among women with breast cancer: A population-based analysis of US Medicare beneficiaries. Breast Cancer Res Treat 131(1):231–238PubMedCrossRefGoogle Scholar
  7. 7.
    Leone BA, Romero A, Rabinovich MG et al (1988) Stage IV breast cancer: clinical course and survival of patients with osseous versus extraosseous metastases at initial diagnosis, The GOCS (Grupo Oncológico Cooperativo del Sur) experience. Am J Clin Oncol 11(6):618–622PubMedCrossRefGoogle Scholar
  8. 8.
    James JJ, Evans AJ, Pinder SE et al. (2003) Bone metastases from breast carcinoma: histopathological—radiological correlations and prognostic features. Br J Cancer 18;89(4):660–665Google Scholar
  9. 9.
    Colleoni M, O’Neill A, Goldhirsch A et al (2000) Identifying breast cancer patients at high risk for bone metastases. J Clin Oncol 18(23):3925–3935PubMedGoogle Scholar
  10. 10.
    Lousquy R, Delpech Y, Rouzier R (2011) Nomogram to predict bone metastasis in patients with non metastatic breast cancer. Poster presentation at San Antonio breast cancer symposium 2011, San Antonio, 6–10 Dec 2011Google Scholar
  11. 11.
    Zhang XH, Wang Q, Gerald W et al (2009) Latent bone metastasis in breast cancer tied to src-dependent survival signals. Cancer Cell 16(1):67–78PubMedCrossRefGoogle Scholar
  12. 12.
    Perfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit organization and progression. Bone 30(1):5–7CrossRefGoogle Scholar
  13. 13.
    Xiong J, O’Brien CA (2012) Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res 27(3):499–505PubMedCrossRefGoogle Scholar
  14. 14.
    Fu Q, Manolagas SC, O’Brien CA (2006) Parathyroid hormone controls receptor activator of NF-kB ligand gene expression via a distant transcriptional enhancer. Mol Cell Biol 26:6453–6468PubMedCrossRefGoogle Scholar
  15. 15.
    Tsutsumi S, Ishii K, Amizuka N et al (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475CrossRefGoogle Scholar
  16. 16.
    O’Flaherty (2000) Modeling normal aging bone loss, with consideration of bone loss in osteoporosis. Toxicol Sci 55(1):171–188PubMedCrossRefGoogle Scholar
  17. 17.
    James JJ, Evans AJ, Pinder SE et al (2003) Bone metastases from breast carcinoma: histopathological -radiological correlations and prognostic features. Br J Cancer 89(4):660–665PubMedCrossRefGoogle Scholar
  18. 18.
    Chen Z, Maricic M, Petinger M et al (2005) Osteoporosis and rate of bone loss among postmenopausal survivors of breast cancer: results from a subgroup in the women’s health initiative observational study. Cancer 104(7):1520–1530PubMedCrossRefGoogle Scholar
  19. 19.
    Uenishi K (2011) Hone no eiyo (Bone nutrition). In: Ueno NT, Kono N, Nakamura S, Hayashi N (eds) Chiem de manabu nyugan no kotsu management (Team-based management of bone metastases in breast cancer), 1st edn. Shinoharashinsha, TokyoGoogle Scholar
  20. 20.
    Yoon V, Maalouf NM, Sakhaee K (2012) The effects of smoking on bone metabolism. Osteoporosis Int 23(8):2081–2092Google Scholar
  21. 21.
    Mathot L, Stenninger J (2012) Behavior of seeds and soil in the mechanism of metastasis; a deeper understanding. Cancer Sci 103(4):626–631PubMedCrossRefGoogle Scholar
  22. 22.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revised. Nat Rev Cancer 3(6):453–458PubMedCrossRefGoogle Scholar
  23. 23.
    Theriault RL, Theriault RL (2012) Biology of bone metastasis. Cancer Control 19(2):92–101PubMedGoogle Scholar
  24. 24.
    Rose AN, Siegel PM (2010) Emerging therapeutic targets in breast cancer bone metastasis. Future Oncol 6(1):55–74PubMedCrossRefGoogle Scholar
  25. 25.
    Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedCrossRefGoogle Scholar
  26. 26.
    Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10:169–180PubMedCrossRefGoogle Scholar
  27. 27.
    Coleman RE, Seaman JJ (2001) The role of zoledronic acid in cancer: clinical studies in the treatment and prevention of bone metastases. Semin Oncol 28:11PubMedCrossRefGoogle Scholar
  28. 28.
    Chirgwin JM, Guise TA (2000) Molecular mechanisms of tumor-bone interactions in osteolytic metastases. Crit Rev Eukaryot Gene Expr 10(2):159–178PubMedCrossRefGoogle Scholar
  29. 29.
    Chiang AC, Massagué J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823PubMedCrossRefGoogle Scholar
  30. 30.
    Guise TA (2002) The Vicious cycle of bone metastasis. J Musculoskel Neuron Interact 2(6):57–570Google Scholar
  31. 31.
    Hayashi N (2011) Hone teni no mechanism (Mechanism of bone metastases). In: Ueno NT, Kohno N, Nakamura S, Hayashi N (eds) Chiem de manabu nyugan no kotsu management (Team-based management of bone metastases in breast cancer), 1st edn. Shinoharashinsha, TokyoGoogle Scholar
  32. 32.
    Simonet WS et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319PubMedCrossRefGoogle Scholar
  33. 33.
    Roodman GD (2004) Mechanism of bone metastasis. N Engl J Med 350(16):1655–1664PubMedCrossRefGoogle Scholar
  34. 34.
    Clines GA, Guise TA (2005) Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer 12(3):549–583PubMedCrossRefGoogle Scholar
  35. 35.
    Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480PubMedCrossRefGoogle Scholar
  36. 36.
    Voorzanger-Rousselot N, Goehrig D, Journe F et al (2007) Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 97(7):964–970PubMedGoogle Scholar
  37. 37.
    Tian E, Zhan F, Walker R et al (2003) The role of the Wnt-signaling antagonist DDK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494PubMedCrossRefGoogle Scholar
  38. 38.
    Clézardin P (2011) Therapeutic targets for bone metastases in breast cancer. Breast Can Res 13(2):207CrossRefGoogle Scholar
  39. 39.
    Yang X, Karsenty G (2002) Transcription factors in bone: developmental and pathological aspects. Trends Mol Med 8(7):340–345PubMedCrossRefGoogle Scholar
  40. 40.
    Bing Y, Williams PJ, Niewolna M et al (2002) Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res 62(3):917–923Google Scholar
  41. 41.
    Valta MP, Hentunen T, Qu Q et al. (2006) Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. Endocrinology147(5):2171–2182Google Scholar
  42. 42.
    Dunn LK, Mohammad KS, Fournier PG et al (2009) Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS ONE 4(9):e6896PubMedCrossRefGoogle Scholar
  43. 43.
    Dai J, Keller J, Zhang J et al (2005) Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res 65(18):8274–8285PubMedCrossRefGoogle Scholar
  44. 44.
    Guise TA, Yin JJ, Mohammad KS (2003) Role of endothelin-1 in osteoblastic bone metastasis. Cancer 97(3 suppl):779–784PubMedCrossRefGoogle Scholar
  45. 45.
    Clines GA, Mohammad KS, Bao Y et al. (2007) Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol 21(2):486–498. Epub 2006 Oct 26Google Scholar
  46. 46.
    Yin JJ, Mohammad KS, Kakonen SM et al (2003) A casual model for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA 100(19):10954–10959PubMedCrossRefGoogle Scholar
  47. 47.
    Coleman RB (2000) Management of bone metastasis. Oncologist 5(6):463–470PubMedCrossRefGoogle Scholar
  48. 48.
    Pagani O, Senkus E, Wood W (2010) International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? J Natl Cancer Inst 102(7):456–463PubMedCrossRefGoogle Scholar
  49. 49.
    Hanrahan EO, Broglio ER, Buzdar AU et al (2005) Combined-modality treatment for isolated recurrence of breast carcinoma—update on 30 years of experience at the University of Texas M.D. Anderson Cancer Center and assessment of prognostic factors. Cancer 104(6):1158–1171PubMedCrossRefGoogle Scholar
  50. 50.
    Dürr HR, Müller PE, Lenz T et al (2002) Surgical treatment of bone metastases in patients with breast cancer. Clin Orthop Relat Res 396:191–196PubMedCrossRefGoogle Scholar
  51. 51.
    Incarbone M, Nava M, Lequaglie C et al (1997) Sternal resection for primary or secondary tumors. J Thorac Cardiovasc Surg 114(1):93–99PubMedCrossRefGoogle Scholar
  52. 52.
    Thompson RC (1992) Impeding fracture associated with bone destruction. Orthopedics 15(5):547–550PubMedGoogle Scholar
  53. 53.
    Harrington KD (1997) Orthopedic surgical management of skeletal complications of malignancy. Cancer 80(8):1614–1627PubMedCrossRefGoogle Scholar
  54. 54.
    Tong D, Gillick L, Hendrickson FR (1982) The palliation of symptomatic osseous metastases: final results of the study by the radiation therapy oncology group. Cancer 50:893–899PubMedCrossRefGoogle Scholar
  55. 55.
    Maranzano E, latini P (1995) Effectiveness of radiation therapy without surgery in metastatic spinal cord compression: final results from a prospective trial. Int J Radiat Oncol Biol Phys 32:959–967PubMedCrossRefGoogle Scholar
  56. 56.
    Perez JE, Machiavelli M, Leone BA et al (1990) Bone-only versus visceral-only metastatic pattern in breast cancer: analysis of 150 patients. A GOCS study. Group Oncologico Cooperativo del Sur. Am J Clin Oncol 13:294–298PubMedCrossRefGoogle Scholar
  57. 57.
    Mouridsen H, Gershanovich M, Sun Y et al (2001) Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 19(10):2596–2606PubMedGoogle Scholar
  58. 58.
    Niikura N, Hayashi N, Palla S et al (2011) Treatment outcomes and prognostic factors for patients with bone-only metastases of breast cancer: a single-institution retrospective analysis. Oncologist 16(2):155–164PubMedCrossRefGoogle Scholar
  59. 59.
    Wong MH, Stockler MR, Palvakis N (2012) Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev 15(2):CD003474Google Scholar
  60. 60.
    Diel IJ (2007) Effectiveness of bisphosphonates on bone pain and quality of life in breast cancer patients with metastatic disease: a review. Support Care Cancer 15(11):1243–1249. Epub 2007 Mar 29Google Scholar
  61. 61.
    Plunkett TA, Smith P, Rubens RD (2000) Risk of complications from bone metastases in breast cancer. Implications for management. Eur J Cancer 36(4):476–482PubMedCrossRefGoogle Scholar
  62. 62.
    Schmid P, Possinger K (2003) Bisphosphonates in metastatic breast cancer. Breast Cancer Res Treat 81(suppl. 1):S87–S93CrossRefGoogle Scholar
  63. 63.
    Petrut B, Trinkaus M, Simmons C et al (2008) A primer of bone metastases management in breast cancer patients. Curr Oncol 15(suppl 1):S50–S57PubMedCrossRefGoogle Scholar
  64. 64.
    Iranikhah M, Wilborn TW, Wensel TM et al (2012) Denosumab for the prevention of skeletal-related events in patients with bone metastasis from solid tumor. Pharmacotherapy 32(3):274–284PubMedCrossRefGoogle Scholar
  65. 65.
    Barton MK (2011) Denosumab an option for patients with bone metastasis from breast cancer. CA Cancer J Clin 61(3):135–136PubMedCrossRefGoogle Scholar
  66. 66.
    Fizazi K, Lipton A, Mariette X (2009) Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 27:1564–1571PubMedCrossRefGoogle Scholar
  67. 67.
    Stopeck AT, Lipton A, Body JJ et al (2010) Denosumab compared with zoledronic acid for the treatment of bone metastasis in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28(35):5132–5139PubMedCrossRefGoogle Scholar
  68. 68.
    Finlay IG, Mason MD, Shelley M (2005) Radioisotopes for the palliation of metastatic bone cancer: a systemic review. Lancet Oncol 6(6):392–400PubMedCrossRefGoogle Scholar
  69. 69.
    Taira AV, Herfkens RJ, Gambhir SS et al (2007) Detection of bone metastases: assessment of integrated PDG PET/CT imaging. Radiology 243:204–211PubMedCrossRefGoogle Scholar
  70. 70.
    Niikura N, Costelloe CM, Madewell JE et al (2011) PDG-PET/CT compared with conventional imaging in the detection of distant metastases of primary breast cancer. Oncologist 16:1111–1119PubMedCrossRefGoogle Scholar
  71. 71.
    Carlson RW, Allred CA, Anderson BO et al (2011) Invasive breast cancer. J Natl Compr Cancer Net 9:136–222Google Scholar
  72. 72.
    Hamaoka T, Costelloe CM, Madewell JE et al (2010) Tumor response interpretation with new tumor response criteria vs the World Health Organization criteria in patients with bone-only metastatic breast cancer. Br J Cancer 102(4):651–657PubMedCrossRefGoogle Scholar
  73. 73.
    Clines GA, Guise TA (2004) Mechanisms and treatment for bone metastases. Clin Adv Hematol Oncol 2(5):295–302PubMedGoogle Scholar
  74. 74.
    Onishi T, Hayashi N, Theriault R et al (2010) Future directions of bone-targeted therapy for metastatic breast cancer. Nat Rev Clin Oncol 7:641–651PubMedCrossRefGoogle Scholar
  75. 75.
    Pickering LM, Mansi JL (2002) The role of bisphosphonates in breast cancer management: review article. Curr Med Res Opin 18(5):284–295PubMedCrossRefGoogle Scholar
  76. 76.
    Britton KM, Kirby JA, Lennard TWJ et al (2011) Cancer stem cells and side population cells in breast cancer and metastasis. Cancers 3:2106–2130CrossRefGoogle Scholar
  77. 77.
    Marchini C, Montani M, Konstantindou G et al (2010) Mesenchymal’stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies. PLoS ONE 5(11):e14131PubMedCrossRefGoogle Scholar
  78. 78.
    Zou W, Kitaura H, Reeve J et al (2007) Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol 176(6):877–888PubMedCrossRefGoogle Scholar
  79. 79.
    Khalili P, Arakelian A, Chen G et al (2006) A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther 5(9):2271–2280PubMedCrossRefGoogle Scholar
  80. 80.
    Bretschi M, Merz M, Komljenovic D et al (2011) Cilengitide inhibits metastatic bone colonization in a nude rat model. Oncol Rep 26(4):843–851PubMedGoogle Scholar
  81. 81.
    Harms JF, Welch DR, Samant RS et al (2004) A small molecule antagonist of the alpha(v)beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis 21(2):119–128PubMedCrossRefGoogle Scholar
  82. 82.
    Rucci N, Recchia I, Angelucci A et al (2006) Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: implications for therapy. J Pharmacol Ep Ther 318:161–172CrossRefGoogle Scholar
  83. 83.
    Bakewell SJ, Nestor P, Prasad S (2003) Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proc Natl Acad Sci USA 100(24):14205–14210PubMedCrossRefGoogle Scholar
  84. 84.
    Boyce BF, Yoneda T, Lowe C et al (1992) Requirement of pp 60c-serc expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90:1622–1627PubMedCrossRefGoogle Scholar
  85. 85.
    Saad F, Lipton A (2010) Src kinase inhibitor: targeting bone metastases and tumor growth in prostate and breast cancer. Cancer Treat Rev 36(2):177–184PubMedCrossRefGoogle Scholar
  86. 86.
    Le Gall C, Bonnelye E, Clézardin P (2008) Cathepsin K inhibitors as treatment of bone metastasis. Curr Opin Support Palliat Care 2:218–222PubMedCrossRefGoogle Scholar
  87. 87.
    Le Gall C, Bellahcène A, Bonnelye E et al (2007) A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res 67(20):9894–9902PubMedCrossRefGoogle Scholar
  88. 88.
    Podgorski I (2009) Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem 1(1):21–34PubMedCrossRefGoogle Scholar
  89. 89.
    Ramirez G, Jensen AB, Olmeo N et al. (2008) Effect of cathepsin K inhibition on supression of bone resorption in women with breast cancer and established bone metastases in a 4-week, double-blind, randomized controlled trial. Presented at breast cancer symposium 2008, Washington, 5–7 Sept 2008Google Scholar
  90. 90.
    Leto G (2010) Activin A and bone metastasis. J Cell Physiol 225(2):302–309PubMedCrossRefGoogle Scholar
  91. 91.
    Leto G, Incorvaia L, Badalamenti G et al (2006) Activin A circulating levels in patients with bone metastasis from breast or prostate cancer. Clin Exp Metastasis 23:117–122PubMedCrossRefGoogle Scholar
  92. 92.
    Incorvaia L, Badalamenti G, Rini G et al. (2007) MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. Anticancer Res 27(3B):1519–1525Google Scholar
  93. 93.
    Chantry AD, Heath D, Mulivor AW et al (2011) Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J Bone Miner Res 25(12):2633–2646CrossRefGoogle Scholar
  94. 94.
    Mulivor AW, Barbosa D, Kumar R et al (2009) RAP-011, a soluble activin receptor type IIA murine IgG-Fc fusion protein, is a novel bone anabolic agent that prevents bone loss and skeletal loss in a mouse model of metastatic breast cancer. Bone 44(2):S221–S222CrossRefGoogle Scholar
  95. 95.
    Tian E, Zhan F, Walker R et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494PubMedCrossRefGoogle Scholar
  96. 96.
    Grimshaw MJ, Hagemann T, Ayhan A et al (2004) A Role for endothelin-2 and its receptors in breast tumor cell invasion. Cancer Res 64(7):2461–2468PubMedCrossRefGoogle Scholar
  97. 97.
    Liao J, McCauley LK (2006) Skeletal metastasis: established and emerging roles of parathyroid hormone related protein (PTHrP). Cancer Met Rev 25:559–571Google Scholar
  98. 98.
    Lacey DL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRefGoogle Scholar
  99. 99.
    Lyer S, Wang ZG, Akhtari M et al (2005) Targeting TGFβ signaling for cancer therapy. Cancer Biol Ther 4(3):261–266CrossRefGoogle Scholar
  100. 100.
    Massague J (2008) TGFβ in cancer. Cell 134:215–230PubMedCrossRefGoogle Scholar
  101. 101.
    Ye L, Mason MD, Jiang WG (2011) Bone morphogenetic protein and bone metastasis, implication and therapeutic potential. Front Biosci 1(16):865–897CrossRefGoogle Scholar
  102. 102.
    Huang EH, Singh B, Cristofanilli M et al (2009) A XCXR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res 155(2):231–236PubMedCrossRefGoogle Scholar
  103. 103.
    Hassan S, Buchanan M, Jahan K et al (2011) CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer 129(1):225–232PubMedCrossRefGoogle Scholar
  104. 104.
    Wong D, Korz W (2008) Translating an antagonist of chemokine receptor CXCR4: from bench to bedside. Clin Cancer 14:7975–7980CrossRefGoogle Scholar
  105. 105.
    Cabioglu N, Sahin AA, Morandi P et al (2009) Chemokine receptors in advanced breast cancer: differential expression in metastatic disease sites with diagnostic and therapeutic implications. Ann Oncol 20(6):1013–1019. doi: 10.1093/740 PubMedCrossRefGoogle Scholar
  106. 106.
    Henriksen G, Fisher DR, Roeske JC et al (2003) Targeting of osseous sites with alpha-emiting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med 44(2):252–259PubMedGoogle Scholar
  107. 107.
    Porta C (2012) The European multidisciplinary cancer congress (ECCO 16, ESMO 36 and ESTRO 30). Future Oncol 8(1):13–15PubMedCrossRefGoogle Scholar
  108. 108.
    Nilsson S, Franzen L, Parker C et al (2007) Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomized, multicenter, placebo-controlled phase II study. Lancet Oncol 8(7):587–594PubMedCrossRefGoogle Scholar
  109. 109.
    Coleman R, Flamen P, Naume B et al. (2011) An open-label, phase IIa, non-randomized study of radium-223 in breast cancer patients with bone dominant disease no longer considered suitable for endocrine therapy. Poster presentation at San Antonio breast cancer symposium 2011, San Antonio, 6–10 Dec 2011Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Takae M. Brewer
    • 2
  • Richard L. Theriault
    • 3
  • Naoto T. Ueno
    • 1
  1. 1.Section Chief of the Translational Breast Cancer Research, Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Internal MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations