Mass Spectrometry Applications

  • Carla Soler
  • Josep Rubert
  • Jordi Mañes
Part of the Food Microbiology and Food Safety book series (FMFS, volume 2)


The history of proteomics dates back to the discovery of two-dimensional gels in the 1970s, which provided the first feasible way of displaying hundreds or thousands of proteins on a single gel. Despite mass spectrometry being restricted for a long time to small and thermostable compounds, the development in the late 1980s of two techniques for the routine and general formation of molecular ions of intact biomolecules changed this situation and mass spectrometry has become an indispensable tool for proteomics research. The aim of this chapter is to review the major types of MS instruments used in proteomics analysis and to discuss strategies for the analysis of whole proteins and peptides obtained after degradation. Finally, major applications of mass spectrometry-based proteomics in food safety are summarized.


Whey Protein Select Reaction Monitoring Royal Jelly Mozzarella Cheese Hybrid Instrument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefGoogle Scholar
  2. Aerbersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295CrossRefGoogle Scholar
  3. Aiello D, De Luca D, Gionfriddo E, Naccarato A, Napoli A, Romano E, Russo A, Sindona G, Tagarelli A (2011) Multistage mass spectrometry in quality, safety and origin of foods. Eur J Mass Spectrom 17:1–31CrossRefGoogle Scholar
  4. Angeletti R, Gioacchini AM, Seraglia R, Piro R, Traldi P (1998) The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese. J Mass Spectrom 33:525–531CrossRefGoogle Scholar
  5. Anhalt JP, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47:219–225CrossRefGoogle Scholar
  6. Bendixen E (2005) The use of proteomics in meat science. Meat Sci 71:138149Google Scholar
  7. Bernevic B, Petre BA, Galetskiy D, Werner C, Wicke M, Schellander K, Przybylski M (2011) Degradation and oxidation postmortem of myofibrillar proteins in porcine skeleton muscle revealed by high resolution mass spectrometric proteome analysis. Int J Mass Spectrom 305:217–227CrossRefGoogle Scholar
  8. Cairns DA (2011) Statistical issues in quality control of proteomic analyses, good experimental design and planning. Proteomics 11:1037–1048CrossRefGoogle Scholar
  9. Camafeita E, Mendez E (1998) Screening of gluten avenins in foods by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 33:1023–1028CrossRefGoogle Scholar
  10. Camafeita E, Alfonso P, Acevedo B, Mendez E (1997a) Sample preparation optimization for the analysis of gliadins in food by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 32:444–449CrossRefGoogle Scholar
  11. Camafeita E, Alfonso P, Mothes T, Mendez E (1997b) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric micro-analysis: the first non-immunological alternative attempt to quantify gluten gliadins in food samples. J Mass Spectrom 32:940–947CrossRefGoogle Scholar
  12. Camafeita E, Solis J, Alfonso P, Lopez JA, Sorell L, Mendez E (1998) Selective identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of different types of gluten in foods made with cereal mixtures. J Chromatogr A 823:299–306CrossRefGoogle Scholar
  13. Careri M, Bianchi F, Corradini C (2002) Recent advances in the application of mass spectrometry in food-related analysis. J Chromatogr A 970:3–64CrossRefGoogle Scholar
  14. Chen CH (2008) Review of a current role of mass spectrometry for proteome research. Anal Chim Acta 624:16–36CrossRefGoogle Scholar
  15. Cordawener JHG, Luykx DMAM, Frankhuizen R, Bremer MGEG, Hooijerink H, America AHP (2009) Untargeted LC-Q-TOF mass spectrometry method for the detection of adulterations in skimmed-milk powder. J Sep Sci 32:1216–1223CrossRefGoogle Scholar
  16. Cornish TJ, Cotter RJ (1993a) Tandem time-of-flight mass spectrometer. Anal Chem 65:1043–1047CrossRefGoogle Scholar
  17. Cornish TJ, Cotter RJ (1993b) Collision-induced dissociation in a tandem time-of-flight mass spectrometer with two single-stage reflectrons. Org Mass Spectrom 28:1129–1134CrossRefGoogle Scholar
  18. Cottrell JS (1994) Protein identification by peptide mass fingerprinting. Pept Res 7:115.124Google Scholar
  19. D’Alessandro A, Zolla L (2012) We are what we eat: food safety and proteomics. J Proteome Res 11:26–36CrossRefGoogle Scholar
  20. Di Girolamo F, D’Amato A, Righetti PG (2012) Assessment of the floral origin of honey via proteomic tools. J Proteomics 75:3688–3693CrossRefGoogle Scholar
  21. Domon B, Aaebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217CrossRefGoogle Scholar
  22. Emmet MR, Caprioli RM (1994) Microelectrospray mass spectrometry: ultra high-sensitivity analysis of peptides and proteins. J Am Soc Mass Spectrom 5:605–613CrossRefGoogle Scholar
  23. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989CrossRefGoogle Scholar
  24. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71CrossRefGoogle Scholar
  25. Ferranti P, Mamone G, Picariello G, Addeo F (2007) Mass spectrometry analysis of gliadins in celiac disease. J Mass Spectrom 42:1531–1548CrossRefGoogle Scholar
  26. Fountoulakis M, Juranville JF, Roeder D, Evers S, Berndt P, Langen H (1998) Reference map of the low molecular mass proteins of Haemophilus influenzae. Electrophoresis 19:1819–1827CrossRefGoogle Scholar
  27. Garbis S, Lubec G, Fountoulakis M (2005) Limitations of current proteomics technologies. J Chromatogr A 1077:1–18CrossRefGoogle Scholar
  28. Gašo-Sokač D, Kovač S, Josić D (2010) Application of proteomics in food technology and food biotechnology: process development, quality control and product safety. Food Technol Biotechnol 48:284–295Google Scholar
  29. Gingras AC, Aebersold R, Raught B (2005) Advances in protein complex analysis using mass spectrometry. J Physiol 563:11–21CrossRefGoogle Scholar
  30. Glish GL, Burinsky DJ (2008) Hybrid mass spectrometers for tandem mass spectrometry. J Am Soc Mass Spectrom 19:161–172CrossRefGoogle Scholar
  31. Griffin TJ, Xie H, Bandhakavi S, Popko J, Mohan A, Carlis JV, Higgins L (2007) iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res 6:4200–4209CrossRefGoogle Scholar
  32. Guerrera IC, Kleiner O (2005) Application of mass spectrometry in proteomics. Biosci Rep 25:71–93CrossRefGoogle Scholar
  33. Hager JW (2004) QTRAP™ mass spectrometer technology for proteomics applications. Drug Discov Today Targets 3:31–36CrossRefGoogle Scholar
  34. Han X, Aslanian A, Yates JR (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490CrossRefGoogle Scholar
  35. Heick J, Fischer M, Pöpping B (2011) First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry. J Chromatogr A 1218:938–943CrossRefGoogle Scholar
  36. Herrero M, Simó C, Garcia-Cañas V, Ibáñez E, Cifuentes A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 31:49–69CrossRefGoogle Scholar
  37. Hillenkamp F, Karas M (1990) Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol 193:280–295CrossRefGoogle Scholar
  38. Holland JW, Gupta R, Deeth HC, Alewood PF (2011) Proteomic analysis of temperature-dependent changes in stored UHT milk. J Agr Food Chem 59:1837–1846CrossRefGoogle Scholar
  39. Hunt DF, Yates JR, Shabanowitz J, Winston S, Hauer CR (1986) Protein sequencing by tandem mass spectrometry. Proc Natn Acad Sci U S A 83:6233–6237CrossRefGoogle Scholar
  40. Ji QC, Rodila R, Gage EM, El-Shourbagy TA (2003) A strategy of plasma protein quantitation by selective reaction monitoring of an intact protein. Anal Chem 75:7008–7014CrossRefGoogle Scholar
  41. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular mass exceeding 10,000 Daltons. Anal Chem 60:2299–2301CrossRefGoogle Scholar
  42. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243Google Scholar
  43. Lametsch R, Roepstorff P, Bendixen E (2002) Identification of protein degradation during post-mortem storage of pig meat. J Agr Food Chem 50:5508–5512CrossRefGoogle Scholar
  44. Lane CS (2005) Mass spectrometry-based proteomics in the life sciences. Cell Mol Life Sci 62:848–869CrossRefGoogle Scholar
  45. Le Blanc JC, Hager JW, Ilisiu AM, Hunter C, Zhong F, Chu I (2003) Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (QTRAP) used for high sensitivity proteomics applications. Proteomics 3:859–869CrossRefGoogle Scholar
  46. Liebler DC, Yates JR (2002) Introduction to proteomics. Tools for the new biology. Humana Press, TotowaGoogle Scholar
  47. Macek B, Waanders L, Olsen JV, Mann M (2006) Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteom 5:949–958CrossRefGoogle Scholar
  48. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162CrossRefGoogle Scholar
  49. Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473CrossRefGoogle Scholar
  50. Marshall AG, Hendrickson CL (2008) High-resolution mass spectrometers. Annu Rev Anal Chem 1:579–599CrossRefGoogle Scholar
  51. Melanson JE, Chisholm KA, Pinto DM (2006) Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry. Rapid Comm Mass Spectrom 20:904–910CrossRefGoogle Scholar
  52. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteom 10: M111.011015-(1–15)Google Scholar
  53. Monaci L, Visconti A (2009) Mass spectrometry-based proteomics methods for analysis of food allergens. TrACs Trends Anal Chem 28:581–591CrossRefGoogle Scholar
  54. Monaci L, Losito I, Palmisano F, Visconti A (2010a) Identification of allergenic milk proteins markers in fined white wines by capillary liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr A 1217:4300–4305CrossRefGoogle Scholar
  55. Monaci L, Nørgaard JV, van Hengel AJ (2010b) Feasibility of a capillary LC/ESI-Q-TOF MS method for the detection of milk allergens in an incurred model food matrix. Anal Methods 2:967–972CrossRefGoogle Scholar
  56. Monaci L, Losito I, Palmisano F, Godula M, Visconti A (2011) Towards the quantification of residual milk allergens in caseinate-fined white wines using HPLC coupled with single-stage Orbitrap mass spectrometry. Food Add Contam A 28:1304–1314CrossRefGoogle Scholar
  57. Narasimhan C, Tabb DL, VerBerkmoes NC, Thompson MR, Hettich RL, Uberbacher EC (2005) MASPIC: intensity-based tandem mass spectrometry scoring scheme that improves peptide identification at high confidence. Anal Chem 77:7581–7593CrossRefGoogle Scholar
  58. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021Google Scholar
  59. Picariello G, Mamone G, Addeo F, Ferranti P (2011) The frontiers of mass spectrometry-based techniques in food allergenomics. J Chromatogr A 1218:7386–7398CrossRefGoogle Scholar
  60. Ruan Q, Ji QC, Arnold ME, Griffith Humphreys W, Zhu M (2011) Strategy and its Implications of protein bioanalysis utilizing high-resolution mass spectrometric detection of intact protein. Anal Chem 83:8937–8944CrossRefGoogle Scholar
  61. Scigelova M, Makarov A (2006) Orbitrap mass analyzer -overview and applications in proteomics. Prac Proteom 1–2:16–21Google Scholar
  62. Sénéchal S, Kussmann M (2011) Nutriproteomics: technologies and applications for identification and quantification of biomarkers and ingredients. P Nutr Soc 70:351–354CrossRefGoogle Scholar
  63. Shen TL, Noon KR (2004) Liquid cromatography-mass spectrometry and tandem mass spectrometry of peptides and proteins. In: Aguilar MI (ed) HPLC of peptides and proteins. Methods and protocols. Humana Press, Totowa, pp 111–139Google Scholar
  64. Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) Sensitivity considerations for large molecule detection by capillary electrophoresis-electrospray ionization mass spectrometry. J Chromatogr 516:157–165CrossRefGoogle Scholar
  65. Sospedra I, Soler C, Mañes J, Soriano JM (2012) Rapid whole protein quantitation of staphylococcal enterotoxins A and B by liquid chromatography/mass spectrometry. J Chromatogr A 1238:54–59CrossRefGoogle Scholar
  66. Westermeier R, Marouga R (2005) Protein detection methods in proteomics research. Bioscience Rep 25:19–32CrossRefGoogle Scholar
  67. Wieser A, Schneider L, Jung J, Schubert S (2012) MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol 93:965–974CrossRefGoogle Scholar
  68. World Food Summit (1996) Scholar
  69. Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Early detection: proteomic applications for the early detection of cancer. Nat Rev Cancer 3:267–275CrossRefGoogle Scholar
  70. Yates JR III (2004) Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct 33:297–316CrossRefGoogle Scholar
  71. Yates JR III, Cociorva D, Liao J, Zabrouskov V (2006) Performance of a linear ion trap-orbitrap hybrid for peptide analysis. Anal Chem 78:493–500CrossRefGoogle Scholar
  72. Zhang J, Lai S, Zhang Y, Huang B, Li D, Ren Y (2012) Multiple reaction monitoring-based determination of bovine α-lactalbumin in infant formulas and whey protein concentrates by ultra-high performance liquid chromatography–tandem mass spectrometry using tryptic signature peptides and synthetic peptide standards. Anal Chimica Acta 727:47–53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departament de Medicina Preventiva i Salut PúblicaUniversitat de ValènciaBurjassotSpain

Personalised recommendations