Skip to main content

Lactic Acid Bacteria in Fermented Foods

  • Chapter
  • First Online:

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

Abstract

This chapter presents a review of proteomic studies dealing with lactic acid bacteria used as starters for the manufacture of various fermented foods. Most of the reported studies in the literature were performed under laboratory conditions mimicking conditions usually found during fermentation processes. A synthetic analysis is proposed for extracting the main features common to all these studies, or those characterizing either a species-specific or a stress-specific trait. A few articles reporting the application of proteomics directly in fermented matrices, aiming to analyze food safety or used as a tool for strain fingerprinting are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arena S, D’Ambrosio C, Renzone G, Rullo R, Ledda L, Vitale F, Maglione G, Varcamonti M, Ferrara L, Scaloni A (2006) A study ofStreptococcus thermophilusproteome by integrated analytical procedures and differential expression investigations. Proteomics 6(1):181–192

    Article  CAS  Google Scholar 

  • Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Cañas B, Calo-Mata P (2011) Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 32:2951–2965

    Article  Google Scholar 

  • Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich D, Maguin E (2005) Proteome characterization of acid tolerance response inLactococcus lactisMG1363. Proteomics 5(18): 4794–4807

    Article  CAS  Google Scholar 

  • Chaillou S, Daty M, Baraige F, Dudez A-M, Anglade P, Jones R, Alpert C-A, Champomier-Vergès M-C, Zagorec M (2009) Intraspecies genomic diversity and natural population structure of the meat-borne lactic acid bacteriumLactobacillus sakei. Appl Environ Microbiol 75(4):970–980

    Article  CAS  Google Scholar 

  • Cohen DPA, Renes J, Bouwman FG, Zoetendal EG, Mariman E, de Vos WM, Vaughan EE (2006) Proteomic analysis of log to stationary growth phaseLactobacillus plantarumcells and a 2-DE database. Proteomics 6(24):6485–6493

    Article  CAS  Google Scholar 

  • D’Alessandro A, Zolla L (2012) We are what we eat: food safety and proteomics. J Proteome Res 11(1):26–36

    Article  Google Scholar 

  • De Angelis M, Bini L, Pallini V, Cocconcelli PS, Gobbetti M (2001) The acid-stress response inLactobacillus sanfranciscensisCB1. Microbiology 147(7):1863–1873

    CAS  Google Scholar 

  • De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23(1):130–135

    CAS  Google Scholar 

  • Di Cagno R, De Angelis M, Limitone A, Fox PF, Gobbetti M (2006) Response ofLactobacillus helveticusPR4 to heat stress during propagation in cheese whey with a gradient of decreasing temperatures. Appl Environ Microbiol 72(7):4503–4514

    Article  CAS  Google Scholar 

  • Di Cagno R, De Angelis M, Limitone A, Minervini F, Simonetti MC, Buchin S, Gobbetti M (2007) Cell-cell communication in sourdough lactic acid bacteria: a proteomic study inLactobacillus sanfranciscensisCB1. Proteomics 7(14):2430–2446

    Article  CAS  Google Scholar 

  • Drews O, Weiss W, Reil G, Parlar H, Wait R, Görg A (2002) High pressure effects step-wise altered protein expression inLactobacillus sanfranciscensis. Proteomics 2(6):765–774

    Article  CAS  Google Scholar 

  • Fadda S, Anglade P, Baraige F, Zagorec M, Talon R, Vignolo G, Champomier-Vergès M-C (2010) Adaptive response ofLactobacillus sakei23K during growth in the presence of meat extracts: a proteomic approach. Int J Food Microbiol 142(1–2):36–43

    Article  Google Scholar 

  • Fedele L, Seraglia R, Battistotti B, Pinelli C, Traldi P (1999) Matrix-assisted laser desorption/ionization mass spectrometry for monitoring bacterial protein digestion in yogurt production. J Mass Spectrom 34(12):1338–1345

    Article  CAS  Google Scholar 

  • Fernandez A, Ogawa J, Penaud S, Boudebbouze S, Ehrlich D, van de Guchte M, Maguin E (2008) Rerouting of pyruvate metabolism during acid adaptation inLactobacillus bulgaricus. Proteomics 8(15):3154–3163

    Article  CAS  Google Scholar 

  • Fernández-No IC, Böhme K, Calo-Mata P, Barros-Velázquez J (2011) Characterisation of histamine-producing bacteria from farmed blackspot seabream (Pagellus bogaraveo) and turbot (Psetta maxima). Int J Food Microbiol 151(2):182–189

    Article  Google Scholar 

  • Frees D, Vogensen FK, Ingmer H (2003) Identification of proteins induced at low pH inLactococcus lactis. Int J Food Microbiol 87(3):293–300

    Article  CAS  Google Scholar 

  • Gagnaire V, Piot M, Camier B, Vissers JPC, Jan G, Léonil J (2004) Survey of bacterial proteins released in cheese: a proteomic approach. Int J Food Microbiol 94(2):185–201

    Article  CAS  Google Scholar 

  • Giebel R, Worden C, Rust SM, Kleinheinz GT, Robbins M, Sandrin TR (2010) Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv Appl Microbiol 71:149–184

    Article  CAS  Google Scholar 

  • Gonzalez-Marquez H, Perrin C, Bracquart P, Guimont C, Linden G (1997) A 16 kDa protein family overexpressed byStreptococcus thermophilusPB18 in acid environments. Microbiology 143:1587–1594

    Article  CAS  Google Scholar 

  • Gouesbet G, Jan G, Boyaval P (2002) Two-dimensional electrophoresis study ofLactobacillus delbrueckiisubsp.bulgaricus thermotolerance. Appl Environ Microbiol 68(3):1055–1063

    Article  CAS  Google Scholar 

  • Guillot A, Gitton C, Anglade P, Mistou M-Y (2003) Proteomic analysis ofLactococcus lactis, a lactic acid bacterium. Proteomics 3(3):337–354

    Article  CAS  Google Scholar 

  • Guimont C, Chopard MA, Gaillard JL, Chamba JF (2002) Protein composition of a strain ofStreptococcus thermophilusgrown in milk at 42°C and in emmental making thermal conditions. Sci Aliment 22(1–2):59–66

    Article  CAS  Google Scholar 

  • Hartke A, Bouché S, Giard J-C, Benachour A, Boutibonnes P, Auffray Y (1996) The lactic acid stress response ofLactococcus lactissubsp.lactis. Curr Microbiol 33(3):194–199

    Article  CAS  Google Scholar 

  • Hervé-Jimenez L, Guillouard I, Guedon E, Gautier C, Boudebbouze S, Hols P, Monnet V, Rul F, Maguin E (2008) Physiology ofStreptococcus thermophilusduring late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics 8(20):4273–4286

    Article  Google Scholar 

  • Hervé-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin E, Rul F (2009) Post-genomic analysis ofStreptococcus thermophiluscocultivated in milk withLactobacillus delbrueckiisubsp.bulgaricus: involment of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 75(7):2062–2073

    Article  Google Scholar 

  • Hörmann S, Scheyhing C, Behr J, Pavlovic M, Ehrmann M, Vogel RF (2006) Comparative proteome approach to characterize the high-pressure stress response ofLactobacillus sanfranciscensisDSM 20451(T). Proteomics 6(6):1878–1885

    Article  Google Scholar 

  • Hussain MA, Knight MI, Britz ML (2009) Proteomic analysis of lactose-starvedLactobacillus caseiduring stationary growth phase. J Appl Microbiol 106(3):764–773

    Article  CAS  Google Scholar 

  • Jardin J, Mollé D, Piot M, Lortal S, Gagnaire V (2012) Quantitative proteomic analysis of bacterial enzymes released in cheese during ripening. Int J Food Microbiol 155(1–2):19–28

    Article  CAS  Google Scholar 

  • Jensen PR, Hammer K (1993) Minimal Requirements for ExponentialGrowth of Lactococcus lactis. Appl Environ Microbiol 59(12):4363-4366

    Article  CAS  Google Scholar 

  • Jofré A, Champomier-Vergès M-C, Anglade P, Baraige F, Martín B, Garriga M, Zagorec M, Aymerich T (2007) Protein synthesis in lactic acid and pathogenic bacteria during recovery from a high pressure treatment. Res Microbiol 158(6):512–520

    Article  Google Scholar 

  • Kilstrup M, Jacobsen S, Hammer K, Vogensen F (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress inLactococcus lactis. Appl Environ Microbiol 63(5):1826–1837

    CAS  Google Scholar 

  • Kleynmans WP, Heinzl U, Hammers H (1989)Lactobacillus suebicussp.nov., an obligately heterofermentativelactobacillusspecies isolate from fruit mashes. Syst Appl Microbiol 11: 267–271

    Article  CAS  Google Scholar 

  • Larsen N, Boye M, Siegumfeldt H, Jakobsen M (2006) Differential expression of proteins and genes in the lag phase ofLactococcus lactissubsp.lactisgrown in synthetic medium and reconstituted skim milk. Appl Environ Microbiol 72:1173–1179

    Article  CAS  Google Scholar 

  • Lim EM, Ehrlich SD, Maguin E (2000) Identification of stress-inducible proteins inLactobacillus delbrueckiisubsp.bulgaricus. Electrophoresis 21(12):2557–2561

    Article  CAS  Google Scholar 

  • Marceau A, Zagorec M, Chaillou S, Méra T, Champomier-Vergès M-C (2004) Evidence for involvement of at least six proteins in adaptation ofLactobacillus sakeito cold temperatures and addition of NaCl. Appl Environ Microbiol 70(12):7260–7268

    Article  CAS  Google Scholar 

  • McLeod A, Zagorec M, Champomier-Vergès M-C, Naterstad K, Axelsson L (2010) Primary metabolism inLactobacillus sakeifood isolates by proteomic analysis. BMC Microbiol 10:120

    Article  Google Scholar 

  • Molina E, Ramos M, Amigo L (2002) Characterisation of the casein fraction of Iberico cheese by electrophoretic techniques. J Sci Food Agric 82(10):1240–1245

    Article  CAS  Google Scholar 

  • Nakamura R, Nakamura R, Nakano M, Arisawa K, Ezaki R, Horiuchi H, Teshima R (2010) Allergenicity study of EGFP-transgenic chicken meat by serological and 2D-DIGE analysis. Food Chem Toxicol 48(5):1302–1310

    Article  CAS  Google Scholar 

  • Pessione E, Mazzoli R, Giuffrida MG, Lamberti C, Garcia-Moruno E, Barello C, Conti A, Giunta C (2005) A proteomic approach to studying biogenic amine producing lactic acid bacteria. Proteomics 5(3):687–698

    Article  CAS  Google Scholar 

  • Sentandreu MA, Sentandreu E (2011) Peptide biomarkers as a way to determine meat authenticity. Meat Sci 89(3):280–285

    Article  CAS  Google Scholar 

  • Silva J, Carvalho AS, Ferreira R, Vitorino R, Amado F, Domingues P, Teixeira P, Gibbs PA (2005) Effect of the pH of growth on the survival ofLactobacillus delbrueckiisubsp.bulgaricusto stress conditions during spray-drying. J Appl Microbiol 98(3):775–782

    Article  CAS  Google Scholar 

  • Streit F, Delettre J, Corrieu G, Béal C (2008) Acid adaptation ofLactobacillus delbrueckiisubsp.bulgaricusinduces physiological responses at membrane and cytosolic levels that improves cryotolerance. J Appl Microbiol 105(4):1071–1080

    Article  CAS  Google Scholar 

  • Vallejo-Cordoba B, Rodríguez-Ramírez R, González-Córdova AF (2010) Capillary electrophoresis for bovine and ostrich meat characterisation. Food Chem 120(1):304–307

    Article  CAS  Google Scholar 

  • Vogel RF, Pavlovic M, Hörmann S, Ehrmann MA (2005) High pressure-sensitive gene expression inLactobacillus sanfranciscensis. Braz J Med Biol Res 38(8):1247–1252

    Article  CAS  Google Scholar 

  • Wang Y, Delettre J, Guillot A, Corrieu G, Béal C (2005) Influence of cooling temperature and duration on cold adaptation ofLactobacillus acidophilusRD758. Cryobiology 50(3):294–307

    Article  CAS  Google Scholar 

  • Yvon M, Gitton C, Chambellon E, Bergot G, Monnet V (2011) The initial efficiency of the proteolytic system ofLactococcus lactisstrains determines their responses to a cheese environment. Int Dairy J 21(5):335–345

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y, Zhu Y, Mao S, Li Y (2010) Proteomic analyses to reveal the protective role of glutathione in resistance ofLactococcus lactisto osmotic stress. Appl Environ Microbiol 76(10):3177–3186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Christine Champomier-Vergès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rul, F., Zagorec, M., Champomier-Vergès, MC. (2013). Lactic Acid Bacteria in Fermented Foods. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_15

Download citation

Publish with us

Policies and ethics