Evacuation Through Clustering Techniques

  • Chrysafis Vogiatzis
  • Jose L. Walteros
  • Panos M. Pardalos
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 32)


Evacuation and disaster management is of the essence for any advanced society. Ensuring the welfare and well-being of the citizens even in times of immense distress is of utmost importance. Especially in coastal areas where tropical storms and hurricanes pose a threat on a yearly basis, evacuation planning and management is vital. However, modern metropolitan city evacuations prove to be large-scale optimization problems which cannot be tackled in a timely manner with the computational power available. We propose a clustering technique to divide the problem into smaller and easier subproblems and present numerical results that prove our success.


Evacuation and disaster management Large-scale optimization problems Decomposition by clustering technique 


  1. 1.
    Ford, J.L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aronson, J.E.: A survey of dynamic network flows. Ann. Oper. Res. 20, 1–66 (1989)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Zheng, Q.P., Arulselvan, A.: Discrete time dynamic traffic assignment models and solution algorithm for managed lanes. J. Global. Optim. Springer, 1–22 (2011)Google Scholar
  4. 4.
    Rebennack, S., Arulselvan, A., Elefteriadou, L., Pardalos, P.: Complexity analysis for maximum flow problems with arc reversals. J. Comb. Optim. 19, 200–216 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kim, S., Shekhar, S.: Contraflow network reconfiguration for evacuation planning: A summary of results. In: Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems, GIS 05, ACM, New York, NY, USA, pp. 250–259 (2005)Google Scholar
  6. 6.
    Bretschneider, S., Kimms, A.: Pattern-based evacuation planning for urban areas. European Journal of Operational Research 216(1), 57–69 (2012)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hamacher, H., Tjandra, S.: Mathematical Modeling of Evacuation Problems: A State of Art, Berichte des Frauenhofer. ITWM, Nr. 24 (2001)Google Scholar
  8. 8.
    Ziliaskopoulos, A.K.: A linear programming model for the single destination system optimum dynamic traffic assignment problem. Transport. Sci. 34 (1), 37 (2000)MATHCrossRefGoogle Scholar
  9. 9.
    Liu, Y., Lai, X., Chang, G.L.: Cell-based network optimization model for staged evacuation planning under emergencies. Transportation Res. Rec.: J. Transportation Res. Board 1, 127–135 (2006)CrossRefGoogle Scholar
  10. 10.
    Tuydes, H., Ziliaskopoulos, A.: Tabu-based heuristic approach for optimization of network evacuation contraflow. Transportation Res. Rec.: J. Transport. Res. Board 1964(1), 157–168 (2006)Google Scholar
  11. 11.
    Makarenko, A., Krushinsky, D., Goldengorin, B.: Anticipation and Delocalization in Cellular Models of Pedestrian Traffic. Proc. INDS, pp. 61–64 (2008)Google Scholar
  12. 12.
    Goldengorin, B., Krushinsky, D., Makarenko, A.: Synchronization of movement for a large-scale crowd. Recent Advances in Nonlinear Dynamics and Synchronization, pp. 277–303. Springer, Berlin (2009)Google Scholar
  13. 13.
    Ahuja, R., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs (1993)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chrysafis Vogiatzis
    • 1
  • Jose L. Walteros
    • 1
  • Panos M. Pardalos
    • 1
  1. 1.Industrial and Systems EngineeringUniversity of FloridaFLUSA

Personalised recommendations