Skip to main content

Nuclear Investigation in Heart Failure and Myocardial Viability

  • Chapter
  • First Online:
Book cover Atlas of Nuclear Cardiology

Abstract

Heart failure (HF) is evolving as an enormous cardiovascular health problem worldwide. In the United States alone, five million patients suffer from symptomatic disease, and more than half a million patients are newly diagnosed with HF every year. There are at least one million hospitalizations that result in 6.5 million hospital days and nearly 300,000 deaths each year. The total inpatient and outpatient costs for HF are approximately $35 billion. It has been increasingly realized that a much larger number of subjects may harbor asymptomatic ventricular dysfunction, and an enormous number may suffer from diseases that render them susceptible to the development of HF. Therefore, it is important that clinicians are able to predict the evolution and progression of the disease so that appropriate preventive measures are undertaken. The recommendations of the American College of Cardiology–American Heart Association emphasize the development of management strategies that will prevent the evolution of HF in those who are susceptible to or suffer from asymptomatic left ventricular dysfunction. For this purpose, various novel strategies are being developed for the identification of neurohumoral alterations that form the basis of ventricular remodeling. The development of new radiotracers represents an important first step toward targeted molecular imaging and image-guided therapy in HF patients. In this chapter, we describe one such molecular imaging strategy, the development of an angiotensin-converting enzyme (ACE) inhibitor that binds specifically to myocardial ACE in the heart and will help identify patients who are susceptible to HF development. This may lead to a new generation of imaging probes for monitoring disease progression and the effectiveness of treatments for HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jessup M, Abraham WT, Casey DE, et al. Focused update: ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2009;119:1977–2016.

    Article  PubMed  Google Scholar 

  2. Narula J, Zaret BL. Epilogue: development of novel imaging techniques for ultimately superior management of congestive heart failure. J Nucl Cardiol. 2002;9(5 Suppl):81S–6.

    Article  PubMed  Google Scholar 

  3. Shirani J, Dilsizian V. Molecular imaging targets of cardiac remodeling. Curr Cardiol Rep. 2009;11:148–54.

    Article  PubMed  Google Scholar 

  4. Swedberg K, Eneroth P, Kjekshus J, et al. Effects of enalapril and neuroendocrine activation on prognosis in severe congestive heart failure (follow-up of the CONSENSUS trial). Am J Cardiol. 1990;66:40D–4.

    Article  PubMed  CAS  Google Scholar 

  5. Dilsizian V, Zynda TK, Petrov A, Ohshima S, Tahara N, Haider N, et al. Molecular imaging of human ACE-1 expression in transgenic rats. J Am Coll Cardiol Img. 2012;5:409–18.

    Article  Google Scholar 

  6. Shirani J, Narula J, Eckelman WC, et al. Early imaging in heart failure: exploring novel molecular targets. J Nucl Cardiol. 2007;14:100–10.

    Article  PubMed  Google Scholar 

  7. Hirsch AT, Talsness CE, Schunkert H, et al. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res. 1991;69:475–82.

    Article  PubMed  CAS  Google Scholar 

  8. Lindpaintner K, Lu W, Niedermajer N, et al. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol. 1993;25:133–43.

    Article  PubMed  CAS  Google Scholar 

  9. Meggs LG, Coupet J, Huang H, et al. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res. 1993;72:1149–62.

    Article  PubMed  CAS  Google Scholar 

  10. Harada K, Sugaya T, Murakami K, et al. Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation. 1999;100:2093–9.

    Article  PubMed  CAS  Google Scholar 

  11. Dilsizian V, Eckelman WC, Loredo ML, et al. Evidence for tissue angiotensin-converting-enzyme in explanted hearts of ischemic cardiomyopathy using targeted radiotracer technique. J Nucl Med. 2007;48:182–7.

    PubMed  CAS  Google Scholar 

  12. Verjans JW, Lovhaug D, Narula N, et al. Noninvasive imaging of myocardial angiotensin receptors in heart failure. J Am Coll Cardiol Img. 2008;1:345–62.

    Google Scholar 

  13. Borne SVD, Isobe S, Verjans JW, et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol. 2008;52:2017–28.

    Article  PubMed  Google Scholar 

  14. Borne SVD, Isobe S, Fujimoto S, et al. Effect of angiotensin-aldosterone axis suppression on cardiac remodeling assessed by molecular imaging by targeting collagen deposition using integrin-seeking radiolabeled probes. J Am Coll Cardiol Img. 2009;2:187–98.

    Article  Google Scholar 

  15. Verjans JW, Wolters SL, Lax M, et al. Imaging αvβ3/β5 integrin upregulation in patients after myocardial infarction. Circulation. 2007;116:11–740.

    Google Scholar 

  16. Taegtmeyer H, Sharma S, Golfman L, et al. Linking gene expression to function: metabolic flexibility in normal and diseased heart. Ann N Y Acad Sci. 2004;1015:1–12.

    Article  Google Scholar 

  17. Depre C, Taegtmeyer H. Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res. 2000;45:538–48.

    Article  PubMed  CAS  Google Scholar 

  18. Kim HD, Kim DJ, Lee IJ, et al. Human fetal heart development after mid-term: morphometry and ultrastructural study. J Mol Cell Cardiol. 1992;24:949–65.

    Article  PubMed  CAS  Google Scholar 

  19. Zhao M, Zhang H, Robinson TF, et al. Profound structural alterations of the extracellular collagen matrix in postischemic dysfunction (“stunned”) but viable myocardium. J Am Coll Cardiol. 1987;10:1322–34.

    Article  PubMed  CAS  Google Scholar 

  20. Shirani J, Lee J, Quigg RJ, Pick R, Bacharach SL, Dilsizian V. Relation of thallium uptake to morphologic features of chronic ischemic heart disease: evidence for myocardial remodeling in non-infarct myocardium. J Am Coll Cardiol. 2001;38:84–90.

    Article  PubMed  CAS  Google Scholar 

  21. Taegtmeyer H. Modulation of responses to myocardial ischemia: metabolic features of myocardial stunning, hibernation, and ischemic preconditioning. In: Dilsizian V, editor. Myocardial viability: a clinical and scientific treatise. Armonk: Futura; 2000. p. 25–36.

    Google Scholar 

  22. The Multicenter Postinfarction Research Group. Risk stratification and survival after myocardial infarction. N Engl J Med. 1983;309:331–6.

    Article  Google Scholar 

  23. Alderman EL, Fisher LD, Litwin P, et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation. 1983;68:785–95.

    Article  PubMed  CAS  Google Scholar 

  24. Bonow RO, Dilsizian V. Thallium-201 for assessment of myocardial viability. Sem Nucl Med. 1991;21:230–41.

    Article  CAS  Google Scholar 

  25. Elefteriades JA, Tolis Jr G, Levi E, et al. Coronary artery bypass grafting in severe left ventricular dysfunction: excellent survival with improved ejection fraction and functional state. J Am Coll Cardiol. 1993;22:1411–7.

    Article  PubMed  CAS  Google Scholar 

  26. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985;72(Suppl V):V123–35.

    PubMed  CAS  Google Scholar 

  27. Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60.

    Article  PubMed  Google Scholar 

  28. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:1146–9.

    Article  PubMed  CAS  Google Scholar 

  29. Heyndrickx GR, Millard RW, McRitchie RJ, et al. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978–85.

    Article  PubMed  CAS  Google Scholar 

  30. Matsuzaki M, Gallagher KP, Kemper S, et al. Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation. 1983;68:170–82.

    Article  PubMed  CAS  Google Scholar 

  31. Arnado LC, Gerber BL, Gupta SN, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol. 2004;44:2383–9.

    Article  Google Scholar 

  32. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105:162–7.

    Article  PubMed  Google Scholar 

  33. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.

    Article  PubMed  CAS  Google Scholar 

  34. Perrone-Filardi P, Pace L, Prastaro M, et al. Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation. 1996;94:2712–9.

    Article  PubMed  CAS  Google Scholar 

  35. Kitsiou AN, Srinivasan G, Quyyumi AA, et al. Stress-induced reversible and mild-to-moderate irreversible thallium defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation. 1998;98:501–8.

    Article  PubMed  CAS  Google Scholar 

  36. Dilsizian V, Rocco TP, Freedman NM, et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med. 1990;323:141–6.

    Article  PubMed  CAS  Google Scholar 

  37. Dilsizian V. Cardiac magnetic resonance versus SPECT: are all non-infarct myocardial regions created equal? J Nucl Cardiol. 2007;14:9–14.

    Article  PubMed  Google Scholar 

  38. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  39. Hunt SA, Baker DW, Chin MH. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. J Am Coll Cardiol. 2001;38:2101–13.

    Article  PubMed  CAS  Google Scholar 

  40. Klocke FJ, Baird MG, Bateman TM, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2003;108(11):1404–18.

    Google Scholar 

  41. Beanlands RSB, Nichol G, Huszti E, et al. F-18 fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary artery disease. J Am Coll Cardiol. 2007;50:2002–12.

    Article  PubMed  Google Scholar 

  42. D’Egidio G, Nichol G, Williams KA, et al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation. J Am Coll Cardiol Img. 2009;2:1060–8.

    Article  Google Scholar 

  43. Bonow RO, Maurer G, Lee KL, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.

    Article  PubMed  CAS  Google Scholar 

  44. Dilsizian V, Bacharach SL, Beanlands SR, Bergmann SR, Delbeke D, Fischman AJ, et al. ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol. 2009;16(4):651. 10.1007/s12350-009-9094-9.

    Article  Google Scholar 

  45. Khin M, Panza JA, Ernst IR, et al. Right ventricular flu­orodeoxyglucose uptake in patients with chronic ischemic heart disease: relation to severity of left ventricular dysfunction. J Nucl Med. 2001;42:171.

    Google Scholar 

  46. Khin M, Carson J, Miller-Davis C, et al. Does right ventricular fluorodeoxyglucose uptake reflect the severity of left and right ventricular dysfunction? J Nucl Cardiol. 2001;8:S127.

    Google Scholar 

  47. Dilsizian V, Bonow RO, Epstein SE, Fananapazir L. Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1993;22:796–804.

    Article  PubMed  CAS  Google Scholar 

  48. Cannon RO, Dilsizian V, O’Gara PT, et al. Myocardial metabolic, hemodynamic and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy. Circulation. 1991;83:1660–7.

    Article  PubMed  Google Scholar 

  49. Cannon RO, Dilsizian V, O’Gara PT, et al. Impact of surgical relief of outflow obstruction on thallium perfusion abnormalities in hypertrophic cardiomyopathy. Circulation. 1992;85:1039–45.

    Article  PubMed  Google Scholar 

  50. Dilsizian V, Panza JA, Bonow RO. Myocardial perfusion imaging in hypertrophic cardiomyopathy. J Am Coll Cardiol Img. 2010;3:1078–80.

    Article  Google Scholar 

  51. Shirani J, Pick R, Roberts WC, Maron BJ. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol. 2000;35:36–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dilsizian, V., Dilsizian, V., Narula, J., Narula, J., Narula, J., Narula, J. (2013). Nuclear Investigation in Heart Failure and Myocardial Viability. In: Dilsizian, V., Narula, J. (eds) Atlas of Nuclear Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5551-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5551-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5549-3

  • Online ISBN: 978-1-4614-5551-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics