Skip to main content

Diagnosis and Risk Stratification in Acute Coronary Syndromes

  • Chapter
  • First Online:
Atlas of Nuclear Cardiology

Abstract

Since the 1970s, radionuclide myocardial perfusion imaging (MPI) has played an important role in diagnosis and risk-stratification of patients with acute ischemic coronary syndromes (ACS). In this chapter, the role of radionuclide imaging techniques in the broad setting of ACS will be reviewed, with emphasis on decision points where the imaging data have been shown to enhance the clinician’s information base in order to optimally manage patients in this setting. Also reviewed will be the role of newer and emerging imaging techniques such as cardiac computed tomography (CT), cardiac magnetic resonance (CMR), and radionuclide techniques, that are under development but not yet widely available, that may have potential clinical utility in the setting of ACS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wackers FJ, Lie KI, Liem KL, et al. Potential value of thallium-201 scintigraphy as a means of selecting patients for the coronary care unit. Br Heart J. 1979;41:111–7.

    Article  PubMed  CAS  Google Scholar 

  2. Gibbons RJ, Verani MS, Behrenbeck T, et al. Feasibility of ­tomographic 99mTc-hexakis-2-methoxy-2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation. 1989;80:1277–86.

    Article  PubMed  CAS  Google Scholar 

  3. Boden WE, O’Rourke RA, Crawford MH, et al. Outcomes in patients with acute non–Q-wave myocardial infarction randomly assigned to an invasive as compared with a conservative management strategy [published correction appears in N Engl J Med. 1998;339:1091]. N Engl J Med. 1998;338:1785–92.

    Article  PubMed  CAS  Google Scholar 

  4. The TIMI IIIB Investigators. Effects of tissue plasminogen activator and a comparison of early invasive and conservative strategies in unstable angina and non–Q-wave myocardial infarction: results of the TIMI IIIB trial: thrombolysis in myocardial ischemia. Circulation. 1994;89:1545–56.

    Google Scholar 

  5. Varetto T, Cantalupi D, Altieri A, et al. Emergency room technetium-99m sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiography. J Am Coll Cardiol. 1993;22:1804–8.

    Article  PubMed  CAS  Google Scholar 

  6. Hilton TC, Thompson RC, Williams H, et al. Technetium-99m sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J Am Coll Cardiol. 1994;23:1016–22.

    Article  PubMed  CAS  Google Scholar 

  7. Tatum JL, Jesse RL, Kontos MC, et al. Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med. 1997;29:116–25.

    Article  PubMed  CAS  Google Scholar 

  8. Heller GV, Stowers SA, Hendel RC, et al. Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J Am Coll Cardiol. 1998;31:1011–7.

    Article  PubMed  CAS  Google Scholar 

  9. Jafary F, Udelson JE. Assessment of myocardial perfusion and left ventricular function in acute coronary syndromes: implications for gated SPECT imaging. In: Germano G, Berman DS, editors. Clinical gated cardiac SPECT. Armonk: Futura; 1999.

    Google Scholar 

  10. Kontos MC, Jesse RL, Anderson FP, et al. Comparison of myocardial perfusion imaging and cardiac troponin I in patients admitted to the emergency department with chest pain. Circulation. 1999;99:2073–8.

    Article  PubMed  CAS  Google Scholar 

  11. Stowers SA, Eisenstein EL, Th Wackers FJ, et al. An economic analysis of an aggressive diagnostic strategy with single photon emission computed tomography myocardial perfusion imaging and early exercise stress testing in emergency department patients who present with chest pain but nondiagnostic electrocardiograms: results from a randomized trial. Ann Emerg Med. 2000;35:17–25.

    Article  PubMed  CAS  Google Scholar 

  12. Udelson JE, Beshansky JR, Ballin DS, et al. Myocardial perfusion imaging for evaluation and triage of patients with suspected acute cardiac ischemia: a randomized controlled trial. JAMA. 2002;288:2693–700.

    Article  PubMed  Google Scholar 

  13. Kawai Y, Tsukamoto E, Nozaki Y, et al. Significance of reduced uptake of iodinated fatty acid analogue for the evaluation of patients with acute chest pain. J Am Coll Cardiol. 2001;38:1888–94.

    Article  PubMed  CAS  Google Scholar 

  14. Kontos MC, Dilsizian V, Weiland F, et al. Iodofiltic acid I 123 (BMIPP) fatty acid imaging improves initial diagnosis in emergency department patients with suspected acute coronary syndromes: a multicenter trial. J Am Coll Cardiol. 2010;56:290–9.

    Article  PubMed  Google Scholar 

  15. Bilodeau L, Theroux P, Gregoire J, et al. Technetium-99m sestamibi tomography in patients with spontaneous chest pain: correlations with clinical, electrocardiographic and angiographic findings. J Am Coll Cardiol. 1991;18:1684–91.

    Article  PubMed  CAS  Google Scholar 

  16. Kontos MC, Jesse RL, Schmidt KL, et al. Value of acute rest sestamibi perfusion imaging for evaluation of patients admitted to the emergency department with chest pain. J Am Coll Cardiol. 1997;30:976–82.

    Article  PubMed  CAS  Google Scholar 

  17. Duca MD, Giri S, Wu AH, et al. Comparison of acute rest myocardial perfusion imaging and serum markers of myocardial injury in patients with chest pain syndromes. J Nucl Cardiol. 1999;6:570–6.

    Article  PubMed  CAS  Google Scholar 

  18. Kosnik JW, Zalenski RJ, Shamsa F, et al. Resting sestamibi imaging for the prognosis of low-risk chest pain. Acad Emerg Med. 1999;6:998–1004.

    Article  PubMed  CAS  Google Scholar 

  19. Schaeffer MW, Brennan TD, Hughes JA, et al. Resting radionuclide myocardial perfusion imaging in a chest pain center including an overnight delayed image acquisition protocol. J Nucl Med Technol. 2007;35:242–5.

    Article  PubMed  Google Scholar 

  20. Hendel RC, Berman DS, Di Carli MF, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation. 2009;119:e561–87.

    Article  PubMed  Google Scholar 

  21. Flachskampf FA, Daniel WG. Cardiac imaging in the patient with chest pain: echocardiography. Heart. 2010;96:1063–72.

    Article  PubMed  Google Scholar 

  22. Amsterdam EA, Kirk JD, Bluemke DA, et al. Testing of low-risk patients presenting to the emergency department with chest pain: a scientific statement from the American Heart Association. Circulation. 2010;122:1756–76.

    Article  PubMed  Google Scholar 

  23. Geleijnse ML, Elhendy A, Kasprzak JD, et al. Safety and prognostic value of early dobutamine-atropine stress echocardiography in patients with spontaneous chest pain and a non-diagnostic electrocardiogram. Eur Heart J. 2000;21:397–406.

    Article  PubMed  CAS  Google Scholar 

  24. Bholasingh R, Cornel JH, Kamp O, et al. Prognostic value of predischarge dobutamine stress echocardiography in chest pain patients with a negative cardiac troponin T. J Am Coll Cardiol. 2003;41:596–602.

    Article  PubMed  Google Scholar 

  25. Nucifora G, Badano LP, Sarraf-Zadegan N, et al. Comparison of early dobutamine stress echocardiography and exercise electrocardiographic testing for management of patients presenting to the emergency department with chest pain. Am J Cardiol. 2007;100:1068–73.

    Article  PubMed  Google Scholar 

  26. Trippi JA, Lee KS, Kopp G, et al. Dobutamine stress tele-echocardiography for evaluation of emergency department patients with chest pain. J Am Coll Cardiol. 1997;30:627–32.

    Article  PubMed  CAS  Google Scholar 

  27. Douglas PS, Garcia MJ, Haines DE, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance endorsed by the American College of Chest Physicians. J Am Coll Cardiol. 2011;57:1126–66.

    Article  PubMed  Google Scholar 

  28. Douglas PS, Khandheria B, Stainback RF, et al. ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress echocardiography: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians, American Heart Association, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance: endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine. Circulation. 2008;117:1478–97.

    Article  PubMed  Google Scholar 

  29. Cury RC, Shash K, Nagurney JT, et al. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation. 2008;118:837–44.

    Article  PubMed  Google Scholar 

  30. Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, et al. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol. 2011;58:1414–22.

    Article  PubMed  Google Scholar 

  31. Litt HI, Gatsonis C, Snyder B, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366:1393–403.

    Article  PubMed  CAS  Google Scholar 

  32. Hoffman U, Truong QA, Schoenfeld DA, et al. Cardiac CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367(4):299.

    Article  Google Scholar 

  33. Sato Y, Matsumoto N, Ichikawa M, et al. Efficacy of multislice computed tomography for the detection of acute coronary syndrome in the emergency department. Circ J. 2005;69:1047–51.

    Article  PubMed  Google Scholar 

  34. White CS, Kuo D, Kelemen M, et al. Chest pain evaluation in the emergency department: can MDCT provide a comprehensive evaluation? AJR Am J Roentgenol. 2005;185:533–40.

    Article  PubMed  Google Scholar 

  35. Hoffmann U, Nagurney JT, Moselewski F, Pena A, Ferencik M, Chae CU, et al. Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation. 2006;114:2251–60.

    Article  PubMed  Google Scholar 

  36. Gallagher MJ, Ross MA, Raff GL, et al. The diagnostic accuracy of 64-slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients. Ann Emerg Med. 2007;49:125–36.

    Article  PubMed  Google Scholar 

  37. Rubinshtein R, Halon DA, Gaspar T, Jaffe R, Karkabi B, Flugelman MY, et al. Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation. 2007;115:1762–8.

    Article  PubMed  Google Scholar 

  38. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol. 2007;49:863–71.

    Article  PubMed  Google Scholar 

  39. Hoffmann U, Bamberg F, Chae CU, Nichols JH, Rogers IS, Seneviratne SK, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol. 2009;53:1642–50.

    Article  PubMed  Google Scholar 

  40. Hollander JE, Chang AM, Shofer FS, McCusker CM, Baxt WG, Litt HI. Coronary computed tomographic angiography for rapid discharge of low-risk patients with potential acute coronary syndromes. Ann Emerg Med. 2009;53:295–304.

    Article  PubMed  Google Scholar 

  41. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2010;122:e525–55.

    Article  PubMed  Google Scholar 

  42. Kwong RY, Schussheim AE, Rekhraj S, et al. Detecting acute coronary syndrome in the emergency department with ­cardiac magnetic resonance imaging. Circulation. 2003;107:531–7.

    Article  PubMed  Google Scholar 

  43. Ingkanisorn WP, Kwong RY, Bohme NS, et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol. 2006;47:1427–32.

    Article  PubMed  Google Scholar 

  44. Miller CD, Hwang W, Hoekstra JW, Case D, Lefebvre C, Blumstein H, et al. Stress cardiac magnetic resonance imaging with observation unit care reduces cost for patients with emergent chest pain: a randomized trial. Ann Emerg Med. 2010;56:209–19.e2.

    Article  PubMed  Google Scholar 

  45. Miller CD, Hwang W, Case D, Hoekstra JW, Lefebvre C, Blumstein H, et al. Stress CMR imaging observation unit in the emergency department reduces 1-year medical care costs in patients with acute chest pain: a randomized study for comparison with inpatient care. JACC Cardiovasc Imaging. 2011;4:862–70.

    Article  PubMed  Google Scholar 

  46. Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48:1475–97.

    Article  PubMed  Google Scholar 

  47. Wright J, Adriaenssens T, Dymarkowski S, et al. Quantification of myocardial area at risk with T2-weighted CMR: comparison with contrast-enhanced CMR and coronary angiography. JACC Cardiovasc Imaging. 2009;2:825–31.

    Article  PubMed  Google Scholar 

  48. Santoro GM, Bisi G, Sciagra R, et al. Single photon emission computed tomography with technetium-99m hexakis 2-methoxyisobutyl isonitrile in acute myocardial infarction before and after thrombolytic treatment: assessment of salvaged myocardium and prediction of late functional recovery. J Am Coll Cardiol. 1990;15:301–14.

    Article  PubMed  CAS  Google Scholar 

  49. Zaret BL, Wackers FJ, Terrin ML, et al. Value of radionuclide rest and exercise left ventricular ejection fraction in assessing survival of patients after thrombolytic therapy for acute myocardial infarction: results of Thrombolysis in Myocardial Infarction (TIMI) phase II study. The TIMI Study Group. J Am Coll Cardiol. 1995;26:73–9.

    Article  PubMed  CAS  Google Scholar 

  50. Travin MI, Dessouki A, Cameron T, et al. Use of exercise technetium-99m sestamibi SPECT imaging to detect residual ischemia and for risk stratification after acute myocardial infarction. Am J Cardiol. 1995;75:665–9.

    Article  PubMed  CAS  Google Scholar 

  51. Mahmarian JJ, Mahmarian AC, Marks GF, et al. Role of adenosine thallium-201 tomography for defining long-term risk in patients after acute myocardial infarction. J Am Coll Cardiol. 1995;25:1333–40.

    Article  PubMed  CAS  Google Scholar 

  52. Ellis SG, Mooney MR, George BS, et al. Randomized trial of late elective angioplasty versus conservative management for patients with residual stenoses after thrombolytic treatment of myocardial infarction. Treatment of Post-Thrombolytic Stenoses (TOPS) Study Group. Circulation. 1992;86:1400–6.

    Article  PubMed  CAS  Google Scholar 

  53. Hochman JS, Lamas GA, Buller CE, et al. Coronary intervention for persistent occlusion after myocardial infarction. N Engl J Med. 2006;355:2395–407.

    Article  PubMed  CAS  Google Scholar 

  54. The TIMI Study Group. Comparison of invasive and conservative strategies after treatment with intravenous tissue plasminogen activator in acute myocardial infarction. Results of the thrombolysis in myocardial infarction (TIMI) phase II trial. The TIMI Study Group. N Engl J Med. 1989;320:618–27.

    Google Scholar 

  55. Mahmarian JJ, Dakik HA, Filipchuk NG, et al. An initial strategy of intensive medical therapy is comparable to that of coronary revascularization for suppression of scintigraphic ischemia in high-risk but stable survivors of acute myocardial infarction. J Am Coll Cardiol. 2006;48:2458–67.

    Article  PubMed  Google Scholar 

  56. Miller TD, Christian TF, Hopfenspirger MR, et al. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation. 1995;92:334–41.

    Article  PubMed  CAS  Google Scholar 

  57. Matsunari I, Schricke U, Bengel FM, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation. 2000;101:2579–85.

    Article  PubMed  CAS  Google Scholar 

  58. Narula J, Petrov A, Pak KY, et al. Very early noninvasive detection of acute experimental nonreperfused myocardial infarction with 99mTc-labeled glucarate. Circulation. 1997;95:1577–84.

    Article  PubMed  CAS  Google Scholar 

  59. Hofstra L, Liem IH, Dumont EA, et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet. 2000;356:209–12.

    Article  PubMed  CAS  Google Scholar 

  60. Anderson JL, Adams CD, Antman EM, et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol. 2007;50:e1–157.

    Article  PubMed  Google Scholar 

  61. Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA. 2000;284:835–42.

    Article  PubMed  CAS  Google Scholar 

  62. Cannon CP, Weintraub WS, Demopoulos LA, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Engl J Med. 2001;344:1879–87.

    Article  PubMed  CAS  Google Scholar 

  63. Brown KA. Management of unstable angina: the role of noninvasive risk stratification. J Nucl Cardiol. 1997;4:S164–8.

    Article  PubMed  CAS  Google Scholar 

  64. Christian TF. The use of perfusion imaging in acute myocardial infarction: applications for clinical trials and clinical care. J Nucl Cardiol. 1995;2:423–36.

    Article  PubMed  CAS  Google Scholar 

  65. Cury RC, Feuchtner G, Mascioli C, et al. Cardiac CT in the emergency department: convincing evidence, but cautious implementation. J Nucl Cardiol. 2011;18:331–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Udelson, J.E., Shenoy, C. (2013). Diagnosis and Risk Stratification in Acute Coronary Syndromes. In: Dilsizian, V., Narula, J. (eds) Atlas of Nuclear Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5551-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5551-6_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5549-3

  • Online ISBN: 978-1-4614-5551-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics