A Clinical Guide to the Treatment of the Human Stress Response

pp 369-384


Sleep and Stress

  • George S. EverlyJr.Affiliated withSchool of Medicine, The Johns Hopkins University
  • , Jeffrey M. LatingAffiliated withLoyola University Mayland

* Final gross prices may vary according to local VAT.

Get Access


We spend roughly one-third of our lives craving, pursuing, forgoing, and savoring sleep. While it is apparent that sleep, which is considered a “complex amalgam of physiologic and behavioral processes” (Carskadon & Dement, 2011, p. 16) is universal and has vital life-preserving functions, its essential purpose remains unknown (Goldsmith & Casola, 2006; Hirshkowitz, Moore, & Minhoto, 1997; Horne, 2006). Theories suggest that sleep restores homeostasis in the central nervous system, conserves energy, regulates heat, or allows for processing of affective information (Goldsmith & Casola; Schwartz & Roth, 2008). While none of these theories have been supported definitively, what is accepted is that sleep is an intricate and active process involving many parts of the brain and is associated with health and personal well-being (Horne, 2006; National Institute of Neurological Disorders and Stroke, NINDS, 2008). For example, sleep loss has been associated with compromising the immune system, including reducing lymphocyte count and Natural Killer cell activity, making people with decreased sleep more vulnerable to infection (Kendall-Tackett, 2009). Before discussing more of the specifics the impact of stress on sleep, it seems prudent to provide a brief overview of the basic constructs of sleep.