Advertisement

TSVs for Power Delivery

  • Nauman Khan
  • Soha Hassoun
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Robust power delivery is one of the ITRS scaling grand challenges due to increasing operating frequencies, increasing power density, and decreasing supply voltages. Three dimensional stacking of multiple dies makes this problem even more challenging. In a 3-D IC, only the die adjacent to the package can get power directly from the package. Dies away from the package require new technologies for power delivery. We evaluate in this chapter using TSVs to deliver power in a 3-D IC with the goal of understanding factors that contribute to the performance of a 3-D power delivery network (PDN). We investigate the impact of TSV size. We study various architectural configurations to find the best TSV granularity. We explore the impact of shared and dedicated TSVs on PDN performance and the feasibility of coaxial TSVs for power delivery.

Keywords

Power Grid Functional Block Silicon Area Power Delivery Voltage Droop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
  3. 3.
    Predictive technology model (PTM). http://www.eas.asu.edu/˜ptm/
  4. 4.
  5. 5.
    (2009) International Technology Roadmap for Semiconductors. http://wwwitrsnet/Links/2009ITRS/Home2009htm http://www.itrs.net/
  6. 6.
    Afzali-Kusha A, Nagata M, Verghese N, Allstot D (2006) Substrate noise coupling in SoC design: modeling, avoidance, and validation. Proc IEEE 94(12):2109–2138Google Scholar
  7. 7.
    Alam SM, Jones RE, Rauf S, Chatterjee R (2007) Inter-Strata connection characteristics and signal transmission in three-dimensional (3D) integration technology. In: 8th international symposium on quality electronic design, pp 580–585Google Scholar
  8. 8.
    Andry P, Tsang C, Sprogis E, Patel C, Wright S, Webb B, Buchwalter L, Manzer D, Horton R, Polastre R, Knickerbocker J (2006) A CMOS-compatible process for fabricating electrical through-vias in silicon. In: Electronic components and technology conference, pp 831–837Google Scholar
  9. 9.
    Andry PS, Tsang CK, Webb BC, Sprogis EJ, Wright SL, Dang B, Manzer DG (2008) Fabrication and characterization of robust through-silicon vias for silicon-carrier applications. IBM J Res Develop 52(6):571–581Google Scholar
  10. 10.
    Bakir M, King C, Sekar D, Thacker H, Dang B, Huang G, Naeemi A, Meindl J (2008) 3D Heterogeneous integrated systems: liquid cooling, power delivery, and implementation. In: IEEE custom integrated circuits conference, pp 663–70Google Scholar
  11. 11.
    Bamal M, List S, Stucchi M, Verhulst A, Hove MV, Cartuyvels R, Beyer G, Maex K (2006) Performance comparison of interconnect technology and architecture options for deep submicron technology nodes. In: International interconnect technology conference, pp 202–204Google Scholar
  12. 12.
    Banerjee K, Srivastava N (2006) Are carbon nanotbues the future of VLSI interconnects? In: 43rd IEEE/ACM annual conference on design automation, pp 809–814Google Scholar
  13. 13.
    Banerjee K, Im S, Srivastava N (2005) Interconnect modeling and analysis in the nanometer era: Cu and beyond. In: 22nd advanced metallization conferenceGoogle Scholar
  14. 14.
    Banerjee K, Li H, Srivastava N (2008) Current status and future perspectives of carbon nanotube interconnects. In: 8th IEEE conference on nanotechnology, pp 432–436Google Scholar
  15. 15.
    Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297(5582):787–792Google Scholar
  16. 16.
    Beattie M, Pileggi L (2001) Inductance 101: modeling and extraction. In: 38th design automation conference, pp 323–328Google Scholar
  17. 17.
    Beica R, Siblerud P, Sharbono C, Bernt M (2008) Advanced metallization for 3D integration. In: 10th electronics packaging technology conference, pp 212–218Google Scholar
  18. 18.
    Beyne E (2008) Solving technical and economical barriers to the adoption of Through-Si-Via 3D integration technologies. In: 10th electronics packaging technology conference, pp 29–34Google Scholar
  19. 19.
    Bhattacharya U, Wang Y, Hamzaoglu F, Ng Y, Wei L, Chen Z, Rohlman J, Young I, Zhang K (2008) 45nm SRAM technology development and technology lead vehicle. Intel Tech J 12(02)Google Scholar
  20. 20.
    Borkar S (2009) Design perspectives on 22nm CMOS and beyond. In: 46th ACM/IEEE design automation conference, pp 93–94Google Scholar
  21. 21.
    Brooks D, Tiwari V, Martonosi M (2000) Wattch: a framework for architectural-level power analysis and optimizations. In: 27th international symposium on computer architecture, pp 83–94Google Scholar
  22. 22.
    Burke P (2002) Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans Nanotechnol 1(3):129–144Google Scholar
  23. 23.
    Burns J, Aull B, Chen C, Chen C, Keast C, Knecht J, Suntharalingam V, Warner K, Wyatt P, Yost D (2006) A wafer-scale 3-D circuit integration technology. IEEE Trans Electron Dev 53(10):2507–2516Google Scholar
  24. 24.
    Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari A, Blackburn A, Wang K, Robertson J (2006) Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Lett 6(6):1107–1112Google Scholar
  25. 25.
    Cao A, Baskaran R, Frederick M, Turner K, Ajayan P, Ramanath G (2003) Direction-selective and length-tunable in-plane growth of carbon nanotubes. Adv Mater 15(13):1105–1109Google Scholar
  26. 26.
    Chang M (2007) Foundry future: challenges in the 21st century. In: IEEE international solid-state circuits conference, pp 18–23Google Scholar
  27. 27.
    Chen D, Chiou W, Chen M, Wang T, Ching K, Tu H, Wu W, Yu C, Yang K, Chang H, Tseng M, Hsiao C, Lu Y, Hu H, Lin Y, Hsu C, Shue W, Yu C (2009) Enabling 3D-IC foundry technologies for 28 nm node and beyond: through-silicon-via integration with high throughput die-to-wafer stacking. In: IEEE international electron devices meeting, pp 1–4Google Scholar
  28. 28.
    Chen T, Chen CC (2001) Efficient large-scale power grid analysis based on preconditioned krylov-subspace iterative methods. In: IEEE/ACM design automation conference, pp 559–562Google Scholar
  29. 29.
    Cheung C, Kurtz A, Park H, Lieber C (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106(10):2429–2433Google Scholar
  30. 30.
    Cho J, Shim J, Song E, Pak JS, Lee J, Lee H, Park K, Kim J (2009) Active circuit to through silicon via (TSV) noise coupling. In: IEEE 18th conference on electrical performance of electronic packaging and systems, pp 97–100Google Scholar
  31. 31.
    Clement F (2001) Substrate noise coupling analysis in mixed-signal ICs. Presentation from the workshop on substrate-noise coupling in mixed-signal ICs, IMEC, Leuven, Belgium, September 56Google Scholar
  32. 32.
    Cong J, Zhang Y (2005) Thermal-driven multilevel routing for 3-D ICs. In: Asia and South Pacific design automation conference, pp 121–126Google Scholar
  33. 33.
    Datta S (2005) Quantum transport: atom to transistor, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    Davis W, Wilson J, Mick S, Xu J, Hua H, Mineo C, Sule A, Steer M, Franzon P (2005) Demystifying 3D ICs: The Pros and Cons of going vertical. IEEE Des Test Comput 22(6):498–510Google Scholar
  35. 35.
    Denda S (2007) Process examination of through silicon via technologies. In: 6th international conference on polymers and adhesives in microelectronics and photonics, pp 149–152Google Scholar
  36. 36.
    Duesberg GS, Graham AP, Kreupl F, Liebau M, Seidel R, Unger E, Hoenlein W (2004) Ways towards the scaleable integration of carbon nanotubes into silicon based technology. Diam Relat Mater 13(2):354–361Google Scholar
  37. 37.
    Early J (1960) Speed, power and component density in multielement high-speed logic systems. In: IEEE international solid-state circuits conference, vol III, pp 78–79Google Scholar
  38. 38.
    Garrou P, Bower C, Ramm P (2008) Handbook of 3D integration: technology and applications of 3D integrated circuits. Wiley-VCH, WeinheimGoogle Scholar
  39. 39.
  40. 40.
    Golshani1 N, Derakhshandeh1 J, Ishihara1 R, Beenakker C, Robertson2 M, Morrison T (2010) Monolithic 3D integration of SRAM and image sensor using two layers of single grain silicon. In: IEEE international conference on 3D system integration, pp 1–7Google Scholar
  41. 41.
    Goplen B, Sapatnekar S (2006) Placement of thermal vias in 3-D ICs using various thermal objectives. IEEE Trans Computer Aided Des Integrated Circ Syst 25(4):692–709Google Scholar
  42. 42.
    Gupta M, Oatley J, Joseph R, Wei G, Brooks D (2007) Understanding voltage variations in chip multiprocessors using a distributed power-delivery network. In: Design, automation test in Europe, pp 1–6Google Scholar
  43. 43.
    Haruehanroengra S, Wang W (2007) Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications. IEEE Electron Dev Lett 28(8):756–759Google Scholar
  44. 44.
    Ho SW, Rao VS, Khan QKN, Yoon SU, Kripesh V (2006) Development of coaxial shield via in silicon carrier for high frequency application. In: 8th electronics packaging technology conference, pp 825–830Google Scholar
  45. 45.
    Ho SW, Yoon SW, Zhou Q, Pasad K, Kripesh V, Lau J (2008) High RF performance TSV silicon carrier for high frequency application. In: 58th electronic components and technology conference, pp 1946–1952Google Scholar
  46. 46.
    Huang G, Bakir M, Naeemi A, Chen H, Meindl J (2007) Power delivery for 3D chip stacks: physical modeling and design implication. In: IEEE electrical performance of electronic packaging, pp 205–208Google Scholar
  47. 47.
    Ishikuro H, Miura N, Kuroda T (2007) Wideband inductive-coupling interface for high-performance portable system. In: IEEE custom integrated circuits conference, pp 13–20Google Scholar
  48. 48.
    Jain P, Kim T, Keane J, Kim CH (2008) A multi-story power delivery technique for 3D integrated circuits. In: 13th international symposium on low power electronics and design, pp 57–62Google Scholar
  49. 49.
    Jang DM, Ryu C, Lee KY, Cho BH, Kim J, Oh TS, Lee WJ, Yu J (2007) Development and evaluation of 3-D SiP with vertically interconnected through silicon vias (TSV). In: Electronic components and technology conference, pp 847–852Google Scholar
  50. 50.
    Joyner J, Venkatesan R, Zarkesh-Ha P, Davis J, Meindl J (2001) Impact of three-dimensional architectures on interconnects in gigascale integration. IEEE Trans Very Large Scale Integ (VLSI) Syst 9(6):922–928Google Scholar
  51. 51.
    Keigler A, O’Donnell K, Liu Z, Wu B, Trezza J (2007) Enabling 3-D design. Semicond Int 30(9):36–44Google Scholar
  52. 52.
    Khan NH, Alam SM, Hassoun S (2009) Power delivery design for 3-D ICs using different through-silicon via (TSV) technologies, very large scale integration (VLSI) systems, IEEE Transactions on, vol.19, no.4, pp.647–658, April 2011Google Scholar
  53. 53.
    Khan N, Alam S, Hassoun S (2009) Through-silicon via (TSV)-induced noise characterization and noise mitigation using coaxial TSVs. In: IEEE international conference on 3D system integration, pp 1–7Google Scholar
  54. 54.
    Kikuchi H, Yamada Y, Ali AM, Liang J, Fukushima T, Tanaka T, Koyanagi M (2008) Tungsten through-silicon via technology for three-dimensional LSIs. Jpn J Appl Phys 47:2801–2805Google Scholar
  55. 55.
    Kim B, Sharbono C, Ritzdorf T, Schmauch D (2006) Factors affecting copper filling process within high aspect ratio deep vias for 3D chip stacking. In: 56th electronic components and technology conference, pp 838–843Google Scholar
  56. 56.
    King C, Sekar D, Bakir M, Dang B, Pikarsky J, Meindl J (2008) 3D Stacking of chips with electrical and microfluidic I/O interconnects. In: Electronic components and technology conference, pp 1–7Google Scholar
  57. 57.
    Knickerbocker J, Patel C, Andry P, Tsang C, Buchwalter L, Sprogis E, Gan H, Horton R, Polastre R, Wright S, Cotte J (2006) 3-D silicon integration and silicon packaging technology using silicon through-vias. IEEE J Solid State Circ 41(8):1718–1725Google Scholar
  58. 58.
    Kreupl F, Graham AP, Liebau M, Duesberg GS, Seidel R, Unger E (2004) Carbon nanotubes for interconnect applications. In: International electron devices meeting, pp 683–686Google Scholar
  59. 59.
    Kuo WS, Wang M, Chen E, Lai JY, Wang YP (2008) Thermal investigations of 3D FCBGA packages with TSV technology. In: 3rd international microsystems, packaging, assembly circuits technology conference, pp 251–254Google Scholar
  60. 60.
    Kurita Y, Soejima K, Kikuchi K, Takahashi M, Tago M, Koike M, Shibuya K, Yamamichi S, Kawano M (2006) A novel “SMAFTI” package for inter-chip wide-band data transfer. In: 56th electronic components and technology conference, pp 289–297Google Scholar
  61. 61.
    Laviron C, Dunne B, Lapras V, Galbiati P, Henry D, Toia F, Moreau S, Anciant R, Brunet-Manquat C, Sillon N (2009) Via first approach optimisation for through silicon via applications. In: 59th electronic components and technology conference, pp 14–19Google Scholar
  62. 62.
    Lee Y, Goel R, Lim SK (2009) Multi-functional interconnect co-optimization for fast and reliable 3D stacked ICs. In: IEEE/ACM international conference on computer-aided design, pp 645–51Google Scholar
  63. 63.
    Lee Y, Yoon JK, Gang H, Bakir M, Joshi Y, Fedorov A, Sung KL (2009) Co-design of signal, power, and thermal distribution networks for 3D ICs. In: Design, automation and test in Europe, pp 610–615Google Scholar
  64. 64.
    Li H, Lu W, Li J, Bai X, Gu C (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95(8):86,601–86,601Google Scholar
  65. 65.
    Loh GH (2008) 3D-stacked memory architectures for multi-core processors. In: 35th international symposium on computer architecture, pp 453–464Google Scholar
  66. 66.
    Loh GH, Xie Y, Black B (2007) Processor design in 3D die-stacking technologies. Micro IEEE 27(3):31–48Google Scholar
  67. 67.
    Loiseau A, Launois P, Petit P, Roche S, Salvetat J (2006) Understanding carbon nanotubes: from basics to applications. Springer, New YorkGoogle Scholar
  68. 68.
    Massoud Y, Nieuwoudt A (2006) Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits. ACM J Emerg Tech Comput Syst 2(3):155–196Google Scholar
  69. 69.
    McEuen P, Park JY (2004) Electron transport in single-walled carbon nanotubes. MRS Bull 29(4):272–275Google Scholar
  70. 70.
    Meindl J (2003) Beyond moore’s law: the interconnect era. Comput Sci Eng 5(1):20–24Google Scholar
  71. 71.
    Miao M, Jin Y, Liao H, Zhao L, Zhu Y, Sun X, Guo Y (2009) Research on deep RIE-based through-si-via micromachining for 3-D system-in-package integration. In: 4th IEEE international conference on nano/micro engineered and molecular systems, pp 90–93Google Scholar
  72. 72.
    Minz JR, Lim SK, Koh C (2005) 3D module placement for congestion and power noise reduction. In: Proceedings of the 15th ACM Great Lakes symposium on VLSI, pp 458–461Google Scholar
  73. 73.
    Mofrad MRT, Derakhshandeh J, Ishihara R, Baiano A, van der Cingel J, Beenakker K (2009) Stacking of single-grain thin-film transistors, Japanese journal of applied physics, vol. 48, p. 03B015-03B015-4, March 2009Google Scholar
  74. 74.
    Moore G (2003) No exponential is forever: but ”Forever” can be delayed! In: IEEE international solid-state circuits conference, pp 20–23Google Scholar
  75. 75.
    Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117Google Scholar
  76. 76.
    Morrow P, Kobrinsky M, Ramanathan S, Park C, Harmes M, Ramachandrarao V, mog Park H, Kloster G, List S, Kim S (2005) Wafer-level 3D interconnects via Cu bonding. In: Advanced metallization conference, pp 125–30Google Scholar
  77. 77.
    Motoyoshi M (2009) Through-silicon via (TSV). Proc IEEE 97(1):43–48Google Scholar
  78. 78.
    Naeemi A, Meindl JD (2009) Carbon nanotube interconnects. Ann Rev Mater Res 39:255–275Google Scholar
  79. 79.
    Naeemi A, Huang G, Meindl JD (2007) Performance modeling for carbon nanotube interconnects in on-chip power distribution. In: Electronic components and technology conference, pp 420–428Google Scholar
  80. 80.
    Nagarajan R, Ebin L, Dayong L, Seng SC, Prasad K, Balasubramanian N (2006) Development of a novel deep silicon tapered via etch process for through-silicon interconnection in 3-D integrated systems. In: 56th electronic components and technology conference, pp 383–387Google Scholar
  81. 81.
    Nihei M, Kondo D, Kawabata A, Sato S, Shioya H, Sakaue M, Iwai T, Ohfuti M, Awano Y (2005) Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. In: IEEE 2005 international interconnect technology conference, pp 234–236Google Scholar
  82. 82.
    Park JY, Rosenblatt S, Yaish Y, Sazonova V, Ustunel H, Braig S, Arias T, Brouwer P, McEuen P (2004) Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett 4(3):517–520Google Scholar
  83. 83.
    Patel CS (2006) Silicon carrier for computer systems. In: 43rd ACM/IEEE design automation conference, pp 857–862Google Scholar
  84. 84.
    Patti R (2006) Three-dimensional integrated circuits and the future of system-on-chip designs. Proc IEEE 94(6):1214–1224Google Scholar
  85. 85.
    der Plas GV, Limaye P, Mercha A, Oprins H, Torregiani C, Thijs S, Linten D, Stucchi M, Guruprasad K, Velenis D, Shinichi D, Cherman V, Vandevelde B, Simons V, Wolf ID, Labie R, Perry D, Bronckers S, Minas N, Cupac M, Ruythooren W, Olmen JV, Phommahaxay A, de Potter de ten Broeck M, Opdebeeck A, Rakowski M, Wachter BD, Dehan M, Nelis M, Agarwal R, Dehaene W, Travaly Y, Marchal P, Beyne E (2010) Design issues and considerations for low-cost 3D TSV IC technology. In: 2010 IEEE international solid-state circuits conference, pp 148–149Google Scholar
  86. 86.
    Pozder S, Lu J, Kwon Y, Zollner S, Yu J, McMahon J, Cale T, Yu K, Gutmann R (2004) Back-end compatibility of bonding and thinning processes for a wafer-level 3D interconnect technology platform. In: IEEE international interconnect technology conference, pp 102–106Google Scholar
  87. 87.
    Rabaey JM, Chandrakasan AP, Nikoli B (2002) Digital integrated circuits: a design perspective. Prentice hall, New JerseyGoogle Scholar
  88. 88.
    Rahman A, Trezza J, New B, Trimberger S (2006) Die stacking technology for terabit chip-to-chip communications. In: IEEE custom integrated circuits conference, pp 587–590Google Scholar
  89. 89.
    Ramaswami S (2010) Process equipment readiness for through-silicon via technologies. Solid State Tech 53(8):16–17Google Scholar
  90. 90.
    Rousseau M, Rozeau O, Cibrario G, Le Carval G, Jaud M-A, Leduc P, Farcy A, Marty A (2008) Through-silicon via based 3D IC technology: Electrostatic simulations for design methodology. In: IMAPS device packaging conference, Phoenix, AZ: United StatesGoogle Scholar
  91. 91.
    Rousseau M, Jaud M, Leduc P, Farcy A, Marty A (2009) Impact of substrate coupling induced by 3D-IC architecture on advanced CMOS technology. In: microelectronics and packaging conference, pp 1–5Google Scholar
  92. 92.
    Schrom G, Liu D, Pichler C, Svensson C, Selberherr S (1994) Analysis of ultra-low-power CMOS with process and device simulation. In: 24th European solid state device research conference, pp 679–682Google Scholar
  93. 93.
    Schulz M (1999) The End of the Road for Silicon. Nature 399(6738):729–730Google Scholar
  94. 94.
    Selvanayagam C, Lau J, Zhang X, Seah S, Vaidyanathan K, Chai T (2009) Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. IEEE Trans Adv Packag 32(4):720–728Google Scholar
  95. 95.
    Selvanayagam C, Zhang X, Rajoo R, Pinjala D (2010) Modelling stress in silicon with TSVs and its effect on mobility. In: 11th electronics packaging technology conference, pp 612–618Google Scholar
  96. 96.
    Singer P (2008) Through-silicon vias: ready for volume manufacturing? Semicond Int 31(3):22–26Google Scholar
  97. 97.
    Sparks TG, Alam SM, Chatterjee R, Rauf S (2006) Method of forming a through-substrate via. U.S. patent appl. 20080113505Google Scholar
  98. 98.
    Srivastava N, Banerjee K (2005) Performance analysis of carbon nanotube interconnects for VLSI applications. In: International conference on computer aided design, pp 383–390Google Scholar
  99. 99.
    Srivastava N, Joshi R, Banerjee K (2005) Carbon nanotube interconnects: implications for performance, power dissipation and thermal management. In: International electron devices meeting, pp 249–252Google Scholar
  100. 100.
    Stahl H, Appenzeller J, Martel R, Avouris P, Lengeler B (2000) Intertube coupling in ropes of single-wall carbon nanotubes. Phys Rev Lett 85(24):5186–5189Google Scholar
  101. 101.
    Sun X, Ji M, Ma S, Zhu Y, Kang W, Miao M, Jin Y (2010) Electrical characterization of sidewall insulation layer of TSV. In: 11th international conference on electronic packaging technology & high density packaging, pp 77–80Google Scholar
  102. 102.
    Tang Z (2010) Efficient design practices for thermal management of a TSV based 3D IC system. In: 19th international symposium on physical design, pp 59–59Google Scholar
  103. 103.
    Tarkiainen R, Ahlskog M, Penttilä J, Roschier L, Hakonen P, Paalanen M, Sonin E (2001) Multiwalled carbon nanotube: luttinger versus fermi liquid. Phys Rev B 64(19):195,412–195,415Google Scholar
  104. 104.
    Tezcan D, Pham N, Majeed B, Moor PD, Ruythooren W, Baert K (2007) Sloped through wafer vias for 3D wafer level packaging. In: 57th electronic components and technology conference, pp 643–647Google Scholar
  105. 105.
    Thompson S, Chau R, Ghani T, Mistry K, Tyagi S, Bohr M (2005) In search of forever, continued transistor scaling one new material at a time. IEEE Trans Semicond Manuf 18(1):26–36Google Scholar
  106. 106.
    Topol A, Tulipe DL, Shi L, Alam S, Frank D, Steen S, Vichiconti J, Posillico D, Cobb M, Medd S, Patel J, Goma S, DiMilia D, Robson M, Duch E, Farinelli M, Wang C, Conti R, Canaperi D, Deligianni L, Kumar A, Kwietniak K, D’Emic C, Ott J, Young A, Guarini K, Ieong M (2005) Enabling SOI-based assembly technology for three-dimensional (3D) integrated circuits (ICs). In: IEEE international electron devices meeting, pp 352–355Google Scholar
  107. 107.
    UKnickerbocker J, SAndry P, Dang B, RHorton R, JInterrante M, SPatel C, JPolastre R, Sakuma K, Sirdeshmukh R, JSprogis E, MSri-Jayantha S, MStephens A, WTopol A, KTsang C, CWebb B, LWright S (2008) Three-dimensional silicon integration. IBM J Res Dev 52(6):553–569Google Scholar
  108. 108.
    Ural A, Li Y, Dai H (2002) Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl Phys Lett 81:34–64Google Scholar
  109. 109.
    Vandevelde B, Okoro C, Gonzalez M, Swinnen B, Beyne E (2008) Thermo-mechanics of 3D-wafer level and 3D stacked IC packaging technologies. In: International conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and micro-systems, pp 1–7Google Scholar
  110. 110.
    Vardaman J, Garrou P (2010) Global trends in 3D IC packaging. Adv Microelectron 37(3):6–8Google Scholar
  111. 111.
    Wang W, Haruehanroengra S, Shang L, Liu M (2007) Inductance of mixed carbon nanotube bundles. Micro Nano Lett 2(2):35–39Google Scholar
  112. 112.
    Wei B, Vajtai R, Ajayan P (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79(8):1172–1174Google Scholar
  113. 113.
    Wong E, Lim SK (2006) 3D Floorplanning with thermal vias. In: Design, automation and test in Europe, pp 878–883Google Scholar
  114. 114.
    Wu JH (2006) Through-substrate interconnects for 3-D integration and RF systems. PhD dissertation, Department of EECS, Massachusetts Institute of TechnologyGoogle Scholar
  115. 115.
    Wunderle B, Mrossko R, Wittler O, Kaulfersch E, Ramm P, Michel B, Reichl H (2007) Thermo-mechanical reliability of 3-D-integrated microstructures in stacked silicon. In: Materials research society symposium, vol 67, pp 970–974Google Scholar
  116. 116.
    Xie B, Shi XQ, Chung CH, Lee SWR (2010) Novel sequential electro-chemical and thermo-mechanical simulation methodology for annular through-silicon-via (TSV) design. In: 60th electronic components and technology conference, pp 1166–1172Google Scholar
  117. 117.
    Xie Y, Cong J, Sapatnekar S (2009) Three dimensional integrated circuit design: EDA, design and microarchitectures. Springer, New YorkGoogle Scholar
  118. 118.
    Y SSMMAKAKDSHITMMOMA (2006) Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles. In: 2006 international interconnect technology conference, pp 230–232Google Scholar
  119. 119.
    Yu H, Ho J, He L (2006) Simultaneous power and thermal integrity driven via stapling in 3D ICs. In: IEEE/ACM international conference on computer-aided design, pp 802–808Google Scholar
  120. 120.
    Yu H, Ho J, He L (2009) Allocating power ground vias in 3D ICs for simultaneous power and thermal integrity. ACM Trans Des Autom Electron Syst 14(3):1–31Google Scholar
  121. 121.
    Zhan Y, Zhang T, Sapatnekar SS (2007) Module assignment for pin-limited designs under the stacked-vdd paradigm. In: IEEE/ACM international conference on computer-aided design, pp 656–659Google Scholar
  122. 122.
    Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, et al (2004) Ultralong single-wall carbon nanotubes. Nat Mater 3(10):673,676Google Scholar
  123. 123.
    Zhou P, Sridharan K, Sapatnekar S (2009) Congestion-aware power grid optimization for 3D circuits using MIM and CMOS decoupling capacitors. In: Asia and South Pacific design automation conference, pp 179–184Google Scholar
  124. 124.
    Zhu L, Xu J, Xiu Y, Sun Y, Hess DW, Wong CP (2006) Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays. Carbon 44(2):253–258Google Scholar

Copyright information

© The Authors 2013

Authors and Affiliations

  • Nauman Khan
    • 1
  • Soha Hassoun
    • 1
  1. 1.Department of Computer ScienceTufts UniversityMedfordUSA

Personalised recommendations