Skip to main content

The Pathophysiology of Gastroesophageal Reflux

  • Chapter
  • First Online:
Gastroesophageal Reflux and the Lung

Part of the book series: Respiratory Medicine ((RM,volume 2))

  • 1361 Accesses

Abstract

Based upon pH monitoring studies, up to 50 reflux episodes a day into the esophagus (below pH 4.0) are considered normal. Exposure to gastric refluxate does not result in the development of disease in the majority of the population, implying that there are intrinsic defense mechanisms that act to maintain mucosal integrity. It is proposed that mucosal inflammation and Barrett’s esophagus occur when reflux is in excess and/or there is a breakdown in the defense mechanisms. The integrity of the human esophageal mucosa depends on several defense mechanisms that protect it against corrosive refluxate. These protective mechanisms can be classified as pre-epithelial (lower esophageal sphincter, peristalsis, and saliva), epithelial (structural defenses, epidermal growth factor, transforming growth factor, Na+/H+ exchanger, carbonic anhydrase, and heat shock proteins), and post-epithelial (blood supply) defenses. In the esophagus, peristalsis and salivary bicarbonate provide for restoration of neutral pH after a reflux episode has occurred. The larynx has no comparable acid clearance mechanism and is therefore much more susceptible to damage by gastric reflux than the esophagus, with three or fewer reflux episodes per week causing laryngeal symptoms and endoscopic findings.

The role of gastric acid in reflux-attributed esophagitis and Barrett’s esophagus is well documented in the literature. It is also widely accepted that extra-esophageal reflux contributes to many other conditions of the aerodigestive tract, including chronic laryngeal inflammation and disease. Recent studies using combined multichannel intraluminal impedance—pH monitoring revealed that the majority of extra-esophageal reflux events are in fact not acidic and that there is often a symptom association with nonacid reflux events. These data highlight a role for the other components of gastric refluxate: bile, trypsin, and pepsin in nonacid reflux. We have shown that pepsin causes laryngeal cell damage independent of the pH of the refluxate and therefore may be responsible for reflux-attributed symptoms refractory to acid suppression therapy and symptoms associated with nonacid reflux events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kandulski A, Malfertheiner P. Gastroesophageal reflux disease-from reflux episodes to mucosal inflammation. Nat Rev Gastroenterol. 2011;9:15–22.

    Google Scholar 

  2. Spechler SJ, Jain SK, Tendler DA, Parker RA. Racial differences in the frequency of symptoms and complications of gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2002;16:1795–800.

    CAS  PubMed  Google Scholar 

  3. Phillips WA, Lord RV, Nancarrow DJ, Watson DI, Whiteman DC. Barrett’s esophagus. J Gastroenterol Hepatol. 2011;26:639–48.

    CAS  PubMed  Google Scholar 

  4. Koufman JA. The otolaryngologic manifestations of gastroesophageal reflux disease (GERD): a clinical investigation of 225 patients using ambulatory 24-hour pH monitoring and an experimental investigation of the role of acid and pepsin in the development of laryngeal injury. Laryngoscope. 1991;101:1–78.

    CAS  PubMed  Google Scholar 

  5. Cherry J, Margulies SI. Contact ulcer of the larynx. Laryngoscope. 1968;78:1937–40.

    CAS  PubMed  Google Scholar 

  6. Delahunty JE. Acid laryngitis. J Laryngol Otol. 1972;86:335–42.

    CAS  PubMed  Google Scholar 

  7. Koufman JA. Laryngopharyngeal reflux is different from classic gastroesophageal reflux disease. Ear Nose Throat J. 2002;81:7–9.

    PubMed  Google Scholar 

  8. Koufman JA, Amin MR, Panetti M. Prevalence of reflux in 113 consecutive patients with laryngeal and voice disorders. Otolaryngol Head Neck Surg. 2000;123:385–8.

    CAS  PubMed  Google Scholar 

  9. Qadeer MA, Colabianchi N, Vaezi MF. Is GERD a risk factor for laryngeal cancer? Laryngoscope. 2005;115:486–91.

    PubMed  Google Scholar 

  10. Little JP, Matthews BL, Glock MS, et al. Extraesophageal pediatric reflux: 24-hour double-probe pH monitoring of 222 children. Ann Otol Rhinol Laryngol. 1997;169:1–16.

    CAS  Google Scholar 

  11. Hoppo T, Sanz AF, Nason KS, et al. How much pharyngeal exposure is “normal”? Normative data for laryngopharyngeal reflux events using hypopharyngeal multichannel intraluminal impedance (HMII). J Gastrointest Surg. 2012;16(1):16–24. discussion 24–25.

    PubMed  Google Scholar 

  12. Belafsky PC, Postma GN, Amin MR, Koufman JA. Symptoms and findings of ­laryngopharyngeal reflux. Ear Nose Throat J. 2002;81:10–3.

    PubMed  Google Scholar 

  13. Barlow WJ, Orlando RC. The pathogenesis of heartburn in nonerosive reflux disease: a unifying hypothesis. Gastroenterology. 2005;128:771–8.

    PubMed  Google Scholar 

  14. Smith JL, Opekun AR, Larkai E, Graham DY. Sensitivity of the esophageal mucosa to pH in gastroesophageal reflux disease. Gastroenterology. 1989;96:683–9.

    CAS  PubMed  Google Scholar 

  15. Agrawal A, Roberts J, Sharma N, Tutuian R, Vela M, Castell DO. Symptoms with acid and nonacid reflux may be produced by different mechanisms. Dis Esophagus. 2009;22:467–70.

    CAS  PubMed  Google Scholar 

  16. Mainie I, Tutuian R, Shay S, et al. Acid and non-acid reflux in patients with persistent symptoms despite acid suppressive therapy: a multicentre study using combined ambulatory impedance-pH monitoring. Gut. 2006;55:1398–402.

    CAS  PubMed  Google Scholar 

  17. Sharma N, Agrawal A, Freeman J, Vela MF, Castell D. An analysis of persistent symptoms in acid-suppressed patients undergoing impedance-pH monitoring. Clin Gastroenterol Hepatol. 2008;6:521–4.

    PubMed  Google Scholar 

  18. Farre R, van Malenstein H, De Vos R, et al. Short exposure of oesophageal mucosa to bile acids, both in acidic and weakly acidic conditions, can impair mucosal integrity and provoke dilated intercellular spaces. Gut. 2008;57:1366–74.

    CAS  PubMed  Google Scholar 

  19. Tobey NA, Hosseini SS, Argote CM, Dobrucali AM, Awayda MS, Orlando RC. Dilated intercellular spaces and shunt permeability in nonerosive acid-damaged esophageal epithelium. Am J Gastroenterol. 2004;99:13–22.

    CAS  PubMed  Google Scholar 

  20. Tobey NA, Reddy SP, Keku TO, Cragoe EJ, Orlando RC. Mechanisms of HCl-induced lowering of intracellular pH in rabbit esophageal epithelial cells. Gastroenterology. 1993;105:1035–44.

    CAS  PubMed  Google Scholar 

  21. Johnston N, Dettmar PW, Bishwokarma B, Lively MO, Koufman JA. Activity/stability of human pepsin: implications for reflux attributed laryngeal disease. Laryngoscope. 2007;117:1036–9.

    PubMed  Google Scholar 

  22. Piper DW, Fenton BH. pH stability and activity curves of pepsin with special reference to their clinical importance. Gut. 1965;6:506–8.

    CAS  PubMed  Google Scholar 

  23. Axford SE, Sharp N, Ross PE, et al. Cell biology of laryngeal epithelial defenses in health and disease: preliminary studies. Ann Otol Rhinol Laryngol. 2001;110:1099–108.

    CAS  PubMed  Google Scholar 

  24. Lillemoe KD, Johnson LF, Harmon JW. Role of the components of the gastroduodenal contents in experimental acid esophagitis. Surgery. 1982;92:276–84.

    CAS  PubMed  Google Scholar 

  25. Sasaki CT, Marotta J, Hundal J, Chow J, Eisen RN. Bile-induced laryngitis: is there a basis in evidence? Ann Otol Rhinol Laryngol. 2005;114:192–7.

    PubMed  Google Scholar 

  26. Fitzgerald RC, Onwuegbusi BA, Bajaj-Elliott M, Saeed IT, Burnham WR, Farthing MJ. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut. 2002;50:451–9.

    CAS  PubMed  Google Scholar 

  27. Naito Y, Uchiyama K, Kuroda M, et al. Role of pancreatic trypsin in chronic esophagitis induced by gastroduodenal reflux in rats. J Gastroenterol. 2006;41:198–208.

    CAS  PubMed  Google Scholar 

  28. Hopwood D. Oesophageal damage and defence in reflux oesophagitis: pathophysiological and cell biological mechanisms. Prog Histochem Cytochem. 1997;32:1–42.

    CAS  PubMed  Google Scholar 

  29. Tack J, Sifrim D. Anti-relaxation therapy in GORD. Gut. 2002;50:6–7.

    CAS  PubMed  Google Scholar 

  30. Dent J, Dodds WJ, Hogan WJ, Toouli J. Factors that influence induction of gastroesophageal reflux in normal human subjects. Dig Dis Sci. 1988;33:270–5.

    CAS  PubMed  Google Scholar 

  31. Sifrim D, Holloway R. Transient lower esophageal sphincter relaxations: how many or how harmful? Am J Gastroenterol. 2001;96:2529–32.

    CAS  PubMed  Google Scholar 

  32. Shaker R. Airway protective mechanisms: current concepts. Dysphagia. 1995;10:216–27.

    CAS  PubMed  Google Scholar 

  33. Stanciu C, Bennett JR. Oesophageal acid clearing: one factor in the production of reflux oesophagitis. Gut. 1974;15:852–7.

    CAS  PubMed  Google Scholar 

  34. Parkkila S, Kaunisto K, Rajaniemi L, Kumpulainen T, Jokinen K, Rajaniemi H. Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II, and I in human parotid and submandibular glands. J Histochem Cytochem. 1990;38:941–7.

    CAS  PubMed  Google Scholar 

  35. Parkkila S, Parkkila AK, Lehtola J, et al. Salivary carbonic anhydrase protects gastroesophageal mucosa from acid injury. Dig Dis Sci. 1997;42:1013–9.

    CAS  PubMed  Google Scholar 

  36. Kongara KR, Soffer EE. Saliva and esophageal protection. Am J Gastroenterol. 1999;94:1446–52.

    CAS  PubMed  Google Scholar 

  37. Helm JF, Dodds WJ, Pelc LR, Palmer DW, Hogan WJ, Teeter BC. Effect of esophageal emptying and saliva on clearance of acid from the esophagus. N Engl J Med. 1984;310:284–8.

    CAS  PubMed  Google Scholar 

  38. Olsen PS, Poulsen SS, Therkelsen K, Nexo E. Effect of sialoadenectomy and synthetic human urogastrone on healing of chronic gastric ulcers in rats. Gut. 1986;27:1443–9.

    CAS  PubMed  Google Scholar 

  39. Sarosiek J, Feng T, McCallum RW. The interrelationship between salivary epidermal growth factor and the functional integrity of the esophageal mucosal barrier in the rat. Am J Med Sci. 1991;302:359–63.

    CAS  PubMed  Google Scholar 

  40. Borradori L, Sonnenberg A. Structure and function of hemidesmosomes: more than simple adhesion complexes. J Invest Dermatol. 1999;112:411–8.

    CAS  PubMed  Google Scholar 

  41. Hopwood D, Logan KR, Bouchier IA. The electron microscopy of normal human oesophageal epithelium. Virchows Arch. 1978;26:345–58.

    CAS  Google Scholar 

  42. Takeichi M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem. 1990;59:237–52.

    CAS  PubMed  Google Scholar 

  43. Dobson H, Pignatelli M, Hopwood D, D’Arrigo C. Cell adhesion molecules in oesophageal epithelium. Gut. 1994;35:1343–7.

    CAS  PubMed  Google Scholar 

  44. Jankowski J, Hopwood D, Wormsley KG. Expression of epidermal growth factor, transforming growth factor alpha and their receptor in gastro-oesophageal diseases. Dig Dis. 1993;11:1–11.

    CAS  PubMed  Google Scholar 

  45. Playford RJ, Wright NA. Why is epidermal growth factor present in the gut lumen? Gut. 1996;38:303–5.

    CAS  PubMed  Google Scholar 

  46. Chen P, Xie H, Sekar MC, Gupta K, Wells A. Epidermal growth factor receptor-mediated cell motility: phospholipase C activity is required, but mitogen-activated protein kinase activity is not sufficient for induced cell movement. J Cell Biol. 1994;127:847–57.

    CAS  PubMed  Google Scholar 

  47. Polk DB. Epidermal growth factor receptor-stimulated intestinal epithelial cell migration requires phospholipase C activity. Gastroenterology. 1998;114:493–502.

    CAS  PubMed  Google Scholar 

  48. Xie H, Pallero MA, Gupta K, et al. EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLCgamma signaling pathway. J Cell Sci. 1998;111(Pt 5):615–24.

    CAS  PubMed  Google Scholar 

  49. Fujiwara Y, Higuchi K, Takashima T, et al. Increased expression of epidermal growth factor receptors in basal cell hyperplasia of the oesophagus after acid reflux oesophagitis in rats. Aliment Pharmacol Ther. 2002;16 Suppl 2:52–8.

    CAS  PubMed  Google Scholar 

  50. Rourk RM, Namiot Z, Sarosiek J, Yu Z, McCallum RW. Impairment of salivary epidermal growth factor secretory response to esophageal mechanical and chemical stimulation in patients with reflux esophagitis. Am J Gastroenterol. 1994;89:237–44.

    CAS  PubMed  Google Scholar 

  51. Eckley CA, Michelsohn N, Rizzo LV, Tadokoro CE, Costa HO. Salivary epidermal growth factor concentration in adults with reflux laryngitis. Otolaryngol Head Neck Surg. 2004;131:401–6.

    PubMed  Google Scholar 

  52. Li L, Yu Z, Piascik R, et al. Effect of esophageal intraluminal mechanical and chemical stressors on salivary epidermal growth factor in humans. Am J Gastroenterol. 1993;88:1749–55.

    CAS  PubMed  Google Scholar 

  53. Namiot Z, Sarosiek J, Rourk RM, Hetzel DP, McCallum RW. Human esophageal secretion: mucosal response to luminal acid and pepsin. Gastroenterology. 1994;106:973–81.

    CAS  PubMed  Google Scholar 

  54. Sarosiek J, Rourk RM, Piascik R, Namiot Z, Hetzel DP, McCallum RW. The effect of esophageal mechanical and chemical stimuli on salivary mucin secretion in healthy individuals. Am J Med Sci. 1994;308:23–31.

    CAS  PubMed  Google Scholar 

  55. Marcinkiewicz M, Sarosiek J, Edmunds M, Scheurich J, Weiss P, McCallum RW. Monophasic luminal release of prostaglandin E2 in patients with reflux esophagitis under the impact of acid and acid/pepsin solutions. Its potential pathogenetic significance. J Clin Gastroenterol. 1995;21:268–74.

    CAS  PubMed  Google Scholar 

  56. Sarosiek J, McCallum RW. Do salivary organic components play a protective role in health and disease of the esophageal mucosa? Digestion. 1995;56 Suppl 1:32–7.

    CAS  PubMed  Google Scholar 

  57. Calabro A, Orsini B, Renzi D, et al. Expression of epidermal growth factor, transforming growth factor-alpha and their receptor in the human oesophagus. Histochem J. 1997;29:745–58.

    CAS  PubMed  Google Scholar 

  58. Marquardt H, Hunkapiller MW, Hood LE, Todaro GJ. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science. 1984;223:1079–82.

    CAS  PubMed  Google Scholar 

  59. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem. 1990;265:7709–12.

    CAS  PubMed  Google Scholar 

  60. Parkkila S, Parkkila AK. Carbonic anhydrase in the alimentary tract. Roles of the different isozymes and salivary factors in the maintenance of optimal conditions in the gastrointestinal canal. Scand J Gastroenterol. 1996;31:305–17.

    CAS  PubMed  Google Scholar 

  61. Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995;64:375–401.

    CAS  PubMed  Google Scholar 

  62. Tashian RE. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays. 1989;10:186–92.

    CAS  PubMed  Google Scholar 

  63. Christie KN, Thomson C, Xue L, Lucocq JM, Hopwood D. Carbonic anhydrase isoenzymes I, II, III, and IV are present in human esophageal epithelium. J Histochem Cytochem. 1997;45:35–40.

    CAS  PubMed  Google Scholar 

  64. Helm JF, Dodds WJ, Hogan WJ, Soergel KH, Egide MS, Wood CM. Acid neutralizing capacity of human saliva. Gastroenterology. 1982;83:69–74.

    CAS  PubMed  Google Scholar 

  65. Tobey NA, Powell DW, Schreiner VJ, Orlando RC. Serosal bicarbonate protects against acid injury to rabbit esophagus. Gastroenterology. 1989;96:1466–77.

    CAS  PubMed  Google Scholar 

  66. Johnston N, Knight J, Dettmar PW, Lively MO, Koufman J. Pepsin and carbonic anhydrase isoenzyme III as diagnostic markers for laryngopharyngeal reflux disease. Laryngoscope. 2004;114:2129–34.

    CAS  PubMed  Google Scholar 

  67. Layden TJ, Agnone LM, Schmidt LN, Hakin B, Goldstein JL. Rabbit esophageal cells possess an Na+, H+  antiporter. Gastroenterology. 1990;99:909–17.

    CAS  PubMed  Google Scholar 

  68. Tobey NA, Reddy SP, Keku TO, Cragoe EJ, Orlando RC. Studies on pHi in rabbit esophageal basal and squamous epithelial cells in culture. Gastroenterology. 1992;103:830–9.

    CAS  PubMed  Google Scholar 

  69. Tobey NA, Reddy SP, Khalbuss WE, Silvers SM, Cragoe EJ, Orlando RC. Na+-dependent and -independent Cl–/HCO3– exchangers in cultured rabbit esophageal epithelial cells. Gastroenterology. 1993;104:185–95.

    CAS  PubMed  Google Scholar 

  70. Hoffmann EK, Simonsen LO. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989;69:315–82.

    CAS  PubMed  Google Scholar 

  71. Layden TJ, Schmidt L, Agnone L, Lisitza P, Brewer J, Goldstein JL. Rabbit esophageal cell cytoplasmic pH regulation: role of Na(+)-H+  antiport and Na(+)-dependent HCO3– transport systems. Am J Physiol. 1992;263:G407–413.

    CAS  PubMed  Google Scholar 

  72. Madshus IH. Regulation of intracellular pH in eukaryotic cells. Biochem J. 1988;250:1–8.

    CAS  PubMed  Google Scholar 

  73. Orlando RC, Bryson JC, Powell DW. Mechanisms of H+  injury in rabbit esophageal epithelium. Am J Physiol. 1984;246:G718–724.

    CAS  PubMed  Google Scholar 

  74. Tobey NA, Orlando RC. Mechanisms of acid injury to rabbit esophageal epithelium. Role of basolateral cell membrane acidification. Gastroenterology. 1991;101:1220–8.

    CAS  PubMed  Google Scholar 

  75. Minowada G, Welch WJ. Clinical implications of the stress response. J Clin Invest. 1995;95:3–12.

    CAS  PubMed  Google Scholar 

  76. Welch WJ, Brown CR. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones. 1996;1:109–15.

    CAS  PubMed  Google Scholar 

  77. Liang P, MacRae TH. Molecular chaperones and the cytoskeleton. J Cell Sci. 1997;110:1431–40.

    CAS  PubMed  Google Scholar 

  78. Perng MD, Cairns L, van den IJssel P, Prescott A, Hutcheson AM, Quinlan RA. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci. 1999;112:2099–112.

    CAS  PubMed  Google Scholar 

  79. Yagui-Beltran A, Craig AL, Lawrie L, et al. The human oesophageal squamous epithelium exhibits a novel type of heat shock protein response. Eur J Biochem. 2001;268:5343–55.

    CAS  PubMed  Google Scholar 

  80. Johnston N, Dettmar PW, Lively MO, et al. Effect of pepsin on laryngeal stress protein (Sep70, Sep53, and Hsp70) response: role in laryngopharyngeal reflux disease. Ann Otol Rhinol Laryngol. 2006;115:47–58.

    PubMed  Google Scholar 

  81. Orlando RC. Mechanisms of reflux-induced epithelial injuries in the esophagus. Am J Med. 2000;108(Suppl 4a):104S–8S.

    CAS  PubMed  Google Scholar 

  82. Bass BL, Schweitzer EJ, Harmon JW, Kraimer J. H+  back diffusion interferes with intrinsic reactive regulation of esophageal mucosal blood flow. Surgery. 1984;96:404–13.

    CAS  PubMed  Google Scholar 

  83. Harmon JW, Bass BL, Batzri S. Are the bile acids themselves toxic to the esophageal mucosa or mainly in the presence of acid? O.E.S.O. 1994;3:258–63.

    Google Scholar 

  84. Hollwarth ME, Smith M, Kvietys PR, Granger DN. Esophageal blood flow in the cat. Normal distribution and effects of acid perfusion. Gastroenterology. 1986;90:622–7.

    CAS  PubMed  Google Scholar 

  85. Ford CN. Evaluation and management of laryngopharyngeal reflux. JAMA. 2005;294:1534–40.

    CAS  PubMed  Google Scholar 

  86. Ing AJ, Ngu MC, Breslin AB. Pathogenesis of chronic persistent cough associated with gastroesophageal reflux. Am J Respir Crit Care Med. 1994;149:160–7.

    CAS  PubMed  Google Scholar 

  87. Ossakow SJ, Elta G, Colturi T, Bogdasarian R, Nostrant TT. Esophageal reflux and ­dysmotility as the basis for persistent cervical symptoms. Ann Otol Rhinol Laryngol. 1987;96:387–92.

    CAS  PubMed  Google Scholar 

  88. Wiener GJ, Koufman JA, Wu WC, Cooper JB, Richter JE, Castell DO. Chronic hoarseness secondary to gastroesophageal reflux disease: documentation with 24-h ambulatory pH monitoring. Am J Gastroenterol. 1989;84:1503–8.

    CAS  PubMed  Google Scholar 

  89. Shaker R, Milbrath M, Ren J, et al. Esophagopharyngeal distribution of refluxed gastric acid in patients with reflux laryngitis. Gastroenterology. 1995;109:1575–82.

    CAS  PubMed  Google Scholar 

  90. Belafsky PC, Postma GN, Koufman JA. The validity and reliability of the reflux finding score (RFS). Laryngoscope. 2001;111:1313–7.

    CAS  PubMed  Google Scholar 

  91. Postma GN, Tomek MS, Belafsky PC, Koufman JA. Esophageal motor function in laryngopharyngeal reflux is superior to that in classic gastroesophageal reflux disease. Ann Otol Rhinol Laryngol. 2001;110:1114–6.

    CAS  PubMed  Google Scholar 

  92. Sivarao DV, Goyal RK. Functional anatomy and physiology of the upper esophageal sphincter. Am J Med. 2000;108(Suppl 4a):27S–37S.

    PubMed  Google Scholar 

  93. Tamhankar AP, Peters JH, Portale G, et al. Omeprazole does not reduce gastroesophageal reflux: new insights using multichannel intraluminal impedance technology. J Gastrointest Surg. 2004;8:890–7. discussion 897–898.

    PubMed  Google Scholar 

  94. Tutuian R, Vela MF, Hill EG, Mainie I, Agrawal A, Castell DO. Characteristics of symptomatic reflux episodes on acid suppressive therapy. Am J Gastroenterol. 2008;103:1090–6.

    PubMed  Google Scholar 

  95. Kawamura O, Aslam M, Rittmann T, Hofmann C, Shaker R. Physical and pH properties of gastroesophagopharyngeal refluxate: a 24-hour simultaneous ambulatory impedance and pH monitoring study. Am J Gastroenterol. 2004;99:1000–10.

    PubMed  Google Scholar 

  96. Oelschlager BK, Quiroga E, Isch JA, Cuenca-Abente F. Gastroesophageal and pharyngeal reflux detection using impedance and 24-hour pH monitoring in asymptomatic subjects: defining the normal environment. J Gastrointest Surg. 2006;10:54–62.

    PubMed  Google Scholar 

  97. Nehra D, Howell P, Williams CP, Pye JK, Beynon J. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut. 1999;44:598–602.

    CAS  PubMed  Google Scholar 

  98. Kivilaakso E, Fromm D, Silen W. Effect of bile salts and related compounds on isolated esophageal mucosa. Surgery. 1980;87:280–5.

    CAS  PubMed  Google Scholar 

  99. Johnston N, Wells CW, Blumin JH, Toohill RJ, Merati AL. Receptor-mediated uptake of pepsin by laryngeal epithelial cells. Ann Otol Rhinol Laryngol. 2007;116:934–8.

    PubMed  Google Scholar 

  100. Johnston N, Wells CW, Samuels TL, Blumin JH. Rationale for targeting pepsin in the treatment of reflux disease. Ann Otol Rhinol Laryngol. 2011;119:547–58.

    Google Scholar 

  101. Iqbal M, Batch AJ, Moorthy K, Cooper BT, Spychal RT. Outcome of surgical fundoplication for extra-oesophageal symptoms of reflux. Surg Endosc. 2009;23:557–61.

    PubMed  Google Scholar 

  102. Johnston N, Bulmer D, Gill GA, et al. Cell biology of laryngeal epithelial defenses in health and disease: further studies. Ann Otol Rhinol Laryngol. 2003;112:481–91.

    PubMed  Google Scholar 

  103. Johnston N, Wells CW, Samuels TL, Blumin JH. Pepsin in nonacidic refluxate can damage hypopharyngeal epithelial cells. Ann Otol Rhinol Laryngol. 2009;118:677–85.

    PubMed  Google Scholar 

  104. Samuels TL, Johnston N. Pepsin as a causal agent of inflammation during nonacidic reflux. Otolaryngol Head Neck Surg. 2009;141:559–63.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki Johnston Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnston, N. (2012). The Pathophysiology of Gastroesophageal Reflux. In: Meyer, K., Raghu, G. (eds) Gastroesophageal Reflux and the Lung. Respiratory Medicine, vol 2. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5502-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5502-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-5501-1

  • Online ISBN: 978-1-4614-5502-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics