Skip to main content

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Stem cell-based therapies provide new hope for treating glaucoma and other optic neuropathies. Transplanting stem cells or stem cell-derived cells into the retina could provide neuroprotective support to surviving neurons or potentially replace neurons that have already been lost in order to restore visual function. However, before these therapies reach patients, there is a need to identify the appropriate donor cell type(s) to use, as well as how best to differentiate and deliver these cells, to maximize integration, neuroprotection, and functional recovery in the injured retina. Here we review progress towards these goals and critical next steps to bringing stem cell therapies to glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267

    Article  PubMed  CAS  Google Scholar 

  2. Shields MB (2008) Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol 19(2):85–88

    Article  PubMed  Google Scholar 

  3. Much JW, Liu C, Piltz-Seymour JR (2008) Long-term survival of central visual field in end-stage glaucoma. Ophthalmology 115(7):1162–1166

    Article  PubMed  Google Scholar 

  4. Thomson JA et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92(17):7844–7848

    Article  PubMed  CAS  Google Scholar 

  5. Wianny F, Bourillot PY, Dehay C (2011) Embryonic stem cells in non-human primates: an overview of neural differentiation potential. Differentiation 81(3):142–152

    Article  PubMed  CAS  Google Scholar 

  6. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  7. Marshall VS, Waknitz MA, Thomson JA (2001) Isolation and maintenance of primate embryonic stem cells. Methods Mol Biol 158:11–18

    PubMed  CAS  Google Scholar 

  8. Jones JM, Thomson JA (2000) Human embryonic stem cell technology. Semin Reprod Med 18(2):219–223

    Article  PubMed  CAS  Google Scholar 

  9. Turner DL, Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328(6126):131–136

    Article  PubMed  CAS  Google Scholar 

  10. Turner DL, Snyder EY, Cepko CL (1990) Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4(6):833–845

    Article  PubMed  CAS  Google Scholar 

  11. Hatakeyama J, Kageyama R (2004) Retinal cell fate determination and bHLH factors. Semin Cell Dev Biol 15(1):83–89

    Article  PubMed  CAS  Google Scholar 

  12. Brand AH, Livesey FJ (2011) Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron 70(4):719–729

    Google Scholar 

  13. Sernagor E, Eglen SJ, Wong RO (2001) Development of retinal ganglion cell structure and function. Prog Retin Eye Res 20(2):139–174

    Article  PubMed  CAS  Google Scholar 

  14. Kirby MA, Steineke TC (1996) Morphogenesis of retinal ganglion cells: a model of dendritic, mosaic, and foveal development. Perspect Dev Neurobiol 3(3):177–194

    PubMed  CAS  Google Scholar 

  15. Hendrickson AE (1996) Synaptic development in macaque monkey retina and its implications for other developmental sequences. Perspect Dev Neurobiol 3(3):195–201

    PubMed  CAS  Google Scholar 

  16. Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84(1):156–160

    Article  PubMed  CAS  Google Scholar 

  17. Livesey FJ, Cepko CL (2001) Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci 2(2):109–118

    Article  PubMed  CAS  Google Scholar 

  18. Okano H, Temple S (2009) Cell types to order: temporal specification of CNS stem cells. Curr Opin Neurobiol 19(2):112–119

    Article  PubMed  CAS  Google Scholar 

  19. Gomes FL et al (2011) Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138(2):227–235

    Google Scholar 

  20. Cayouette M, Barres BA, Raff M (2003) Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina. Neuron 40(5):897–904

    Article  PubMed  CAS  Google Scholar 

  21. James J et al (2003) In vitro generation of early-born neurons from late retinal progenitors. J Neurosci 23(23):8193–8203

    PubMed  CAS  Google Scholar 

  22. Alexiades MR, Cepko C (1996) Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev Dyn 205(3):293–307

    Article  PubMed  CAS  Google Scholar 

  23. Morin X, Jaouen F, Durbec P (2007) Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci 10(11):1440–1448

    Article  PubMed  CAS  Google Scholar 

  24. Cayouette M, Raff M (2003) The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130(11):2329–2339

    Article  PubMed  CAS  Google Scholar 

  25. Chow RL et al (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126(19):4213–4222

    PubMed  CAS  Google Scholar 

  26. Marquardt T et al (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105(1):43–55

    Article  PubMed  CAS  Google Scholar 

  27. Inoue T et al (2002) Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129(4):831–842

    PubMed  CAS  Google Scholar 

  28. Brown NL et al (1998) Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125(23):4821–4833

    PubMed  CAS  Google Scholar 

  29. Ma W et al (2004) bHLH genes cath5 and cNSCL1 promote bFGF-stimulated RPE cells to transdifferentiate toward retinal ganglion cells. Dev Biol 265(2):320–328

    Article  PubMed  CAS  Google Scholar 

  30. Kanekar S et al (1997) Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19(5):981–994

    Article  PubMed  CAS  Google Scholar 

  31. Wang SW et al (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15(1):24–29

    Article  PubMed  CAS  Google Scholar 

  32. Brown NL et al (2001) Math5 is required for retinal ganglion cell and optic nerve formation. Development 128(13):2497–2508

    PubMed  CAS  Google Scholar 

  33. Kay JN et al (2001) Retinal ganglion cell genesis requires lakritz, a Zebrafish atonal Homolog. Neuron 30(3):725–736

    Article  PubMed  CAS  Google Scholar 

  34. Austin CP et al (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121(11):3637–3650

    PubMed  CAS  Google Scholar 

  35. Dorsky RI, Rapaport DH, Harris WA (1995) Xotch inhibits cell differentiation in the Xenopus retina. Neuron 14(3):487–496

    Article  PubMed  CAS  Google Scholar 

  36. Selkoe D, Kopan R (2003) Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 26:565–597

    Article  PubMed  CAS  Google Scholar 

  37. Baron M (2003) An overview of the Notch signalling pathway. Semin Cell Dev Biol 14(2):113–119

    Article  PubMed  CAS  Google Scholar 

  38. Li CM, Yan RT, Wang SZ (2001) Atrophy of Müller glia and photoreceptor cells in chick retina misexpressing cNSCL2. Invest Ophthalmol Vis Sci 42(13):3103–3109

    PubMed  CAS  Google Scholar 

  39. Riesenberg AN et al (2009) Pax6 regulation of Math5 during mouse retinal neurogenesis. Genesis 47(3):175–187

    Article  PubMed  CAS  Google Scholar 

  40. Gan L et al (1999) POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. Dev Biol 210(2):469–480

    Article  PubMed  CAS  Google Scholar 

  41. Pan L et al (2005) Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development 132(4):703–712

    Article  PubMed  CAS  Google Scholar 

  42. Quina LA et al (2005) Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J Neurosci 25(50):11595–11604

    Article  PubMed  CAS  Google Scholar 

  43. Xiang M (1998) Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors. Dev Biol 197(2):155–169

    Article  PubMed  CAS  Google Scholar 

  44. Xiang M et al (1995) The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 15(7 Pt 1):4762–4785

    PubMed  CAS  Google Scholar 

  45. Badea TC, Nathans J (2011) Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Res 51(2):269–279

    Google Scholar 

  46. Liu W, Mo Z, Xiang M (2001) The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development. Proc Natl Acad Sci USA 98(4):1649–1654

    Article  PubMed  CAS  Google Scholar 

  47. Mao CA et al (2011) Neuronal transcriptional repressor REST suppresses an Atoh7-independent program for initiating retinal ganglion cell development. Dev Biol 349(1):90–99

    Google Scholar 

  48. Wagner N et al (2002) The Wilms’ tumor suppressor Wt1 is associated with the differentiation of retinoblastoma cells. Cell Growth Differ 13(7):297–305

    PubMed  CAS  Google Scholar 

  49. Edlund T, Jessell TM (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96(2):211–224

    Article  PubMed  CAS  Google Scholar 

  50. Wallace VA, Raff MC (1999) A role for Sonic hedgehog in axon-to-astrocyte signalling in the rodent optic nerve. Development 126(13):2901–2909

    PubMed  CAS  Google Scholar 

  51. Yang XJ (2004) Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin Cell Dev Biol 15(1):91–103

    Article  PubMed  CAS  Google Scholar 

  52. Kim J et al (2005) GDF11 controls the timing of progenitor cell competence in developing retina. Science 308(5730):1927–1930

    Article  PubMed  CAS  Google Scholar 

  53. Guillemot F, Cepko CL (1992) Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development 114(3):743–754

    PubMed  CAS  Google Scholar 

  54. Fischer AJ, Reh TA (2002) Exogenous growth factors stimulate the regeneration of ganglion cells in the chicken retina. Dev Biol 251(2):367–379

    Article  PubMed  CAS  Google Scholar 

  55. Yan RT, Wang SZ (2004) Requirement of neuroD for photoreceptor formation in the chick retina. Invest Ophthalmol Vis Sci 45(1):48–58

    Article  PubMed  Google Scholar 

  56. McFarlane S, Zuber ME, Holt CE (1998) A role for the fibroblast growth factor receptor in cell fate decisions in the developing vertebrate retina. Development 125(20):3967–3975

    PubMed  CAS  Google Scholar 

  57. McCabe KL, Gunther EC, Reh TA (1999) The development of the pattern of retinal ganglion cells in the chick retina: mechanisms that control differentiation. Development 126(24):5713–5724

    PubMed  CAS  Google Scholar 

  58. Spence JR et al (2004) The hedgehog pathway is a modulator of retina regeneration. Development 131(18):4607–4621

    Article  PubMed  CAS  Google Scholar 

  59. Neumann CJ, Nuesslein-Volhard C (2000) Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289(5487):2137–2139

    Article  PubMed  CAS  Google Scholar 

  60. Masai I (2000) Mechanisms underlying induction and progression of a neurogenic wave in the zebrafish developing retina. Tanpakushitsu Kakusan Koso 45(17 Suppl):2782–2790

    PubMed  CAS  Google Scholar 

  61. Stenkamp DL, Frey RA (2003) Extraretinal and retinal hedgehog signaling sequentially regulate retinal differentiation in zebrafish. Dev Biol 258(2):349–363

    Article  PubMed  CAS  Google Scholar 

  62. Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126(14):3089–3100

    PubMed  Google Scholar 

  63. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22(1):103–114

    Article  PubMed  CAS  Google Scholar 

  64. Zhang XM, Yang XJ (2001) Temporal and spatial effects of Sonic hedgehog signaling in chick eye morphogenesis. Dev Biol 233(2):271–290

    Article  PubMed  CAS  Google Scholar 

  65. Kolpak A, Zhang J, Bao ZZ (2005) Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration. J Neurosci 25(13):3432–3441

    Article  PubMed  CAS  Google Scholar 

  66. Sanchez-Camacho C, Bovolenta P (2008) Autonomous and non-autonomous Shh signalling mediate the in vivo growth and guidance of mouse retinal ganglion cell axons. Development 135(21):3531–3541

    Article  PubMed  CAS  Google Scholar 

  67. Shkumatava A et al (2004) Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 131(16):3849–3858

    Article  PubMed  CAS  Google Scholar 

  68. Wang YP et al (2002) Development of normal retinal organization depends on Sonic hedgehog signaling from ganglion cells. Nat Neurosci 5(9):831–832

    PubMed  CAS  Google Scholar 

  69. Lai K et al (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6(1):21–27

    Article  PubMed  CAS  Google Scholar 

  70. Moshiri A, Reh TA (2004) Persistent progenitors at the retinal margin of ptc+/− mice. J Neurosci 24(1):229–237

    Article  PubMed  CAS  Google Scholar 

  71. Meyer JS et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 106(39):16698–16703

    Article  PubMed  CAS  Google Scholar 

  72. Aoki H et al (2009) In vitro and in vivo differentiation of human embryonic stem cells into retina-like organs and comparison with that from mouse pluripotent epiblast stem cells. Dev Dyn 238(9):2266–2279

    Article  PubMed  Google Scholar 

  73. Osakada F et al (2009) Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4(6):811–824

    Article  PubMed  CAS  Google Scholar 

  74. Osakada F, Hirami Y, Takahashi M (2010) Stem cell biology and cell transplantation therapy in the retina. Biotechnol Genet Eng Rev 26:297–334

    Google Scholar 

  75. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  PubMed  CAS  Google Scholar 

  76. Gamm DM et al (2007) Protection of visual functions by human neural progenitors in a rat model of retinal disease. PLoS One 2(3):e338

    Article  PubMed  CAS  Google Scholar 

  77. Lund RD et al (2007) Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 25(3):602–611

    Article  PubMed  CAS  Google Scholar 

  78. Wang S et al (2008) Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration. Invest Ophthalmol Vis Sci 49(7):3201–3206

    Article  PubMed  Google Scholar 

  79. Reh TA, Levine EM (1998) Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 36(2):206–220

    Article  PubMed  CAS  Google Scholar 

  80. Reh TA, Fischer AJ (2001) Stem cells in the vertebrate retina. Brain Behav Evol 58(5):296–305

    Article  PubMed  CAS  Google Scholar 

  81. Francis PJ et al (2009) Subretinal transplantation of forebrain progenitor cells in nonhuman primates: survival and intact retinal function. Invest Ophthalmol Vis Sci 50(7):3425–3431

    Article  PubMed  Google Scholar 

  82. Ankeny DP, McTigue DM, Jakeman LB (2004) Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 190(1):17–31

    Article  PubMed  Google Scholar 

  83. Lu P, Jones LL, Tuszynski MH (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191(2):344–360

    Article  PubMed  CAS  Google Scholar 

  84. Neuhuber B et al (2005) Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 1035(1):73–85

    Article  PubMed  CAS  Google Scholar 

  85. Kamada T et al (2005) Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord. J Neuropathol Exp Neurol 64(1):37–45

    PubMed  Google Scholar 

  86. Sun X et al (2011) E13.5 retinal progenitors induce mouse bone marrow mesenchymal stromal cells to differentiate into retinal progenitor-like cells. Cytotherapy 13(3):294–303

    Google Scholar 

  87. Lu B et al (2010) Human adult bone marrow-derived somatic cells rescue vision in a rodent model of retinal degeneration. Exp Eye Res 91(3):449–455

    Google Scholar 

  88. Zhang Y, Wang W (2010) Effects of bone marrow mesenchymal stem cell transplantation on light-damaged retina. Invest Ophthalmol Vis Sci 51(7):3742–3748

    Google Scholar 

  89. Li N, Li XR, Yuan JQ (2009) Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol 247(4):503–514

    Article  PubMed  Google Scholar 

  90. Yu S et al (2006) Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun 344(4):1071–1079

    Article  PubMed  CAS  Google Scholar 

  91. Ballios BG, van der Kooy D (2010) Biology and therapeutic potential of adult retinal stem cells. Can J Ophthalmol 45(4):342–351

    Article  PubMed  Google Scholar 

  92. Ahmad I et al (2011) Müller glia: a promising target for therapeutic regeneration. Invest Ophthalmol Vis Sci 52(8):5758–5764

    Google Scholar 

  93. Easter SS, Jr, Malicki JJ (2002) The zebrafish eye: developmental and genetic analysis. Results Probl Cell Differ 40:346–370

    Google Scholar 

  94. Tropepe V et al (2000) Retinal stem cells in the adult mammalian eye. Science 287(5460):2032–2036

    Article  PubMed  CAS  Google Scholar 

  95. Coles BL et al (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 101(44):15772–15777

    Article  PubMed  CAS  Google Scholar 

  96. Bhatia B et al (2011) Differences between the neurogenic and proliferative abilities of Muller glia with stem cell characteristics and the ciliary epithelium from the adult human eye. Exp Eye Res 93(6):852–861

    Google Scholar 

  97. Fischer AJ, Reh TA (2003) Potential of Muller glia to become neurogenic retinal progenitor cells. Glia 43(1):70–76

    Article  PubMed  Google Scholar 

  98. Fischer AJ, Dierks BD, Reh TA (2002) Exogenous growth factors induce the production of ganglion cells at the retinal margin. Development 129(9):2283–2291

    PubMed  CAS  Google Scholar 

  99. Karl MO, Reh TA (2010) Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med 16(4):193–202

    Google Scholar 

  100. Lamba DA et al (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5(1):e8763

    Article  PubMed  CAS  Google Scholar 

  101. Bringmann A et al (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424

    Article  PubMed  CAS  Google Scholar 

  102. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  103. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  104. Yamanaka S (2008) Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 363(1500):2079–2087

    Article  PubMed  CAS  Google Scholar 

  105. Hirami Y et al (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458(3):126–131

    Article  PubMed  CAS  Google Scholar 

  106. Buchholz DE et al (2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27(10):2427–2434

    Article  PubMed  CAS  Google Scholar 

  107. Boucherie C, Sowden JC, Ali RR (2011) Induced pluripotent stem cell technology for generating photoreceptors. Regen Med 6(4):469–479

    Google Scholar 

  108. Power C, Rasko JE (2011) Promises and challenges of stem cell research for regenerative medicine. Ann Intern Med 155(10):706–13, W217

    Google Scholar 

  109. Zhao T et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215

    Google Scholar 

  110. Kim D et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    Article  PubMed  CAS  Google Scholar 

  111. Antin JH et al (1991) Selective depletion of bone marrow T lymphocytes with anti-CD5 monoclonal antibodies: effective prophylaxis for graft-versus-host disease in patients with hematologic malignancies. Blood 78(8):2139–2149

    PubMed  CAS  Google Scholar 

  112. Macklis JD (1993) Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore-targeted laser photolysis. J Neurosci 13(9):3848–3863

    PubMed  CAS  Google Scholar 

  113. Sheen VL, Macklis JD (1995) Targeted neocortical cell death in adult mice guides migration and differentiation of transplanted embryonic neurons. J Neurosci 15(12):8378–8392

    PubMed  CAS  Google Scholar 

  114. MacLaren RE et al (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444(7116):203–207

    Article  PubMed  CAS  Google Scholar 

  115. Goldberg JL et al (2002) Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296(5574):1860–1864

    Article  PubMed  CAS  Google Scholar 

  116. Takahashi M et al (1998) Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 12(6):340–348

    Article  PubMed  CAS  Google Scholar 

  117. Young MJ et al (2000) Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 16(3):197–205

    Article  PubMed  CAS  Google Scholar 

  118. Chacko DM et al (2000) Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat. Biochem Biophys Res Commun 268(3):842–846

    Article  PubMed  CAS  Google Scholar 

  119. Van Hoffelen SJ et al (2003) Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest Ophthalmol Vis Sci 44(1):426–434

    Article  PubMed  Google Scholar 

  120. Johnson TV, Bull ND, Martin KR (2010) Identification of barriers to retinal engraftment of transplanted stem cells. Invest Ophthalmol Vis Sci 51(2):960–970

    Google Scholar 

  121. Nakamae T et al (2009) Chondroitinase ABC promotes corticospinal axon growth in organotypic cocultures. Spinal Cord 47(2):161–165

    Article  PubMed  CAS  Google Scholar 

  122. Monnier PP et al (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 22(3):319–330

    Article  PubMed  CAS  Google Scholar 

  123. Ellezam B et al (2001) Expression of netrin-1 and its receptors DCC and UNC-5H2 after axotomy and during regeneration of adult rat retinal ganglion cells. Exp Neurol 168(1):105–115

    Article  PubMed  CAS  Google Scholar 

  124. Doherty P, Cohen J, Walsh FS (1990) Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 5(2):209–219

    Article  PubMed  CAS  Google Scholar 

  125. Wolburg H, Willbold E, Layer PG (1991) Müller glia endfeet, a basal lamina and the polarity of retinal layers form properly in vitro only in the presence of marginal pigmented epithelium. Cell Tissue Res 264(3):437–451

    Article  PubMed  CAS  Google Scholar 

  126. Christopherson KS et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433

    Article  PubMed  CAS  Google Scholar 

  127. Sheen VL, Dreyer EB, Macklis JD (1992) Calcium-mediated neuronal degeneration following singlet oxygen production. Neuroreport 3(8):705–708

    Article  PubMed  CAS  Google Scholar 

  128. Madison RD, Macklis JD (1993) Noninvasively induced degeneration of neocortical pyramidal neurons in vivo: selective targeting by laser activation of retrogradely transported photolytic chromophore. Exp Neurol 121(2):153–159

    Article  PubMed  CAS  Google Scholar 

  129. Sheen VL, Macklis JD (1994) Apoptotic mechanisms in targeted neuronal cell death by chromophore-activated photolysis. Exp Neurol 130(1):67–81

    Article  PubMed  CAS  Google Scholar 

  130. Shin JJ et al (2000) Transplanted neuroblasts differentiate appropriately into projection neurons with correct neurotransmitter and receptor phenotype in neocortex undergoing targeted projection neuron degeneration. J Neurosci 20(19):7404–7416

    PubMed  CAS  Google Scholar 

  131. Snyder EY et al (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 94(21):11663–11668

    Article  PubMed  CAS  Google Scholar 

  132. Fricker-Gates RA et al (2002) Late-stage immature neocortical neurons reconstruct interhemispheric connections and form synaptic contacts with increased efficiency in adult mouse cortex undergoing targeted neurodegeneration. J Neurosci 22(10):4045–4056

    PubMed  CAS  Google Scholar 

  133. Felling RJ, Levison SW (2003) Enhanced neurogenesis following stroke. J Neurosci Res 73(3):277–283

    Article  PubMed  CAS  Google Scholar 

  134. Tai YT, Svendsen CN (2004) Stem cells as a potential treatment of neurological disorders. Curr Opin Pharmacol 4(1):98–104

    Article  PubMed  CAS  Google Scholar 

  135. Pluchino S et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436(7048):266–271

    Article  PubMed  CAS  Google Scholar 

  136. Madhavan L, Ourednik V, Ourednik J (2008) Neural stem/progenitor cells initiate the formation of cellular networks that provide neuroprotection by growth factor-modulated antioxidant expression. Stem Cells 26(1):254–265

    Article  PubMed  CAS  Google Scholar 

  137. Maragakis NJ et al (2005) Glial restricted precursors protect against chronic glutamate neurotoxicity of motor neurons in vitro. Glia 50(2):145–159

    Article  PubMed  Google Scholar 

  138. Bankfalvi A et al (2003) Relationship between HER2 status and proliferation rate in breast cancer assessed by immunohistochemistry, fluorescence in situ hybridisation and standardised AgNOR analysis. Int J Oncol 23(5):1285–1292

    PubMed  Google Scholar 

  139. Akerud P et al (2001) Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J Neurosci 21(20):8108–8118

    PubMed  CAS  Google Scholar 

  140. Zhu W, Mao Y, Zhou LF (2005) Reduction of neural and vascular damage by transplantation of VEGF-secreting neural stem cells after cerebral ischemia. Acta Neurochir Suppl 95:393–397

    Article  PubMed  CAS  Google Scholar 

  141. Lee HJ et al (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2(1):e156

    Article  PubMed  CAS  Google Scholar 

  142. Nomura T et al (2005) I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience 136(1):161–169

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Defense, the Hope for Vision foundation, the National Eye Institute (P30 EY014081, Miami), and an unrestricted grant from Research to Prevent Blindness. JH was supported in part by NIH T32-NS07492, and by a Lois Pope Life Fellowship. JLG is the Walter G. Ross Distinguished Chair in Ophthalmic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hertz, J., Goldberg, J.L. (2013). Stem Cells and Glaucoma. In: Tsang, S. (eds) Stem Cell Biology and Regenerative Medicine in Ophthalmology. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5493-9_5

Download citation

Publish with us

Policies and ethics