Skip to main content

Structural Ranking

  • Chapter
  • First Online:
Structured Peer-to-Peer Systems
  • 1381 Accesses

Abstract

Open P2P networks are subject for selfish and incorrect behavior of nodes and even intentional attacks. A maintenance protocol must preserve topology structure not only according with the rules of the efficient graph for routing, but also accounting the cooperation level of nodes. Although the actions taken by intermediate nodes in the P2P network are hidden from the source node, the latter must have some guarantees on their correctness. This problem leads to incentive mechanisms to encourage cooperation of nodes. Such mechanisms provide each node with estimates of others behavior and the node makes own decisions when it selects its actions. In Chap. 6 we consider local ranking models when a node u decides its actions for node v based solely on directly observed past behavior of v. In this chapter, we focus on structural ranking models when network topology structure essentially information for computing ranks of nodes, as it is assumed in such well-known graph-based algorithms as PageRank and EigenTrust. We study models with partial knowledge and distributed computations when each node maintains some knowledge about the global network topology. The knowledge is a topology subgraph that aggregates, in form of cycles, direct and indirect observations of past behavior of nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anagnostakis, K.G., Greenwald, M.B.: Exchange-based incentive mechanisms for peer-to-peer file sharing. In: Proceedings of 24th International Conference on Distributed Computing Systems (ICDCS’04), ICDCS ’04, pp. 524–533. IEEE Computer Society, USA (2004)

    Google Scholar 

  2. Antoniadis, P., Courcoubetis, C., Mason, R.: Comparing economic incentives in peer-to-peer networks. COMNET 46(1), 133–146 (2004). doi: http://dx.doi.org/10.1016/j.comnet.2004.03.021

    Google Scholar 

  3. Aperjis, C., Johari, R.: Designing aggregation mechanisms for reputation systems in online marketplaces. SIGecom Exch. 9, 3:1–3:4 (2010). doi: http://doi.acm.org/10.1145/1980534.1980537

  4. Aperjis, C., Freedman, M.J., Johari, R.: Bilateral and multilateral exchanges for peer-assisted content distribution. IEEE/ACM Trans. Netw. 19(5), 1290–1303 (2011). doi: http://dx.doi.org/10.1109/TNET.2011.2114898

  5. Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking up data in P2P systems. Commun. ACM 46(2), 43–48 (2003). doi: http://doi.acm.org/10.1145/606272.606299

    Google Scholar 

  6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  7. Buchegger, S., Mundinger, J., Boudec, J.Y.L.: Reputation systems for self-organized networks. IEEE Technol. Soc. Mag. 27, 41–47 (2008)

    Article  Google Scholar 

  8. Cohen, B.: Incentives build robustness in BitTorrent. In: Proceedings 1st Workshop on Economics of Peer-to-Peer Systems (2003)

    Google Scholar 

  9. DeFigueiredo, D., Venkatachalam, B., Wu, S.F.: Bounds on the performance of P2P networks using Tit-for-Tat strategies. In: P2P’07: Proceedings 7th IEEE International Conference on Peer-to-Peer Computing, pp. 11–18. IEEE Computer Society, USA (2007)

    Google Scholar 

  10. Despotovic, Z., Aberer, K.: P2P reputation management: probabilistic estimation vs. social networks. Comput. Netw. 50(4), 485–500 (2006). doi: http://dx.doi.org/10.1016/j.comnet.2005.07.003

  11. Donato, D., Paniccia, M., Selis, M., Castillo, C., Cortese, G., Leonardi, S.: New metrics for reputation management in P2P networks. In: AIRWeb ’07: Proceedings of 3rd International workshop on Adversarial information retrieval on the web, pp. 65–72. ACM, New York (2007). doi: http://doi.acm.org/10.1145/1244408.1244421

  12. Douceur, J.R.: The Sybil attack. In: Revised Papers from 1st International Workshop on Peer-to-Peer Systems (IPTPS ’01), pp. 251–260. Springer, Berlin (2002)

    Google Scholar 

  13. Farahat, A., Lofaro, T., Miller, J.C., Rae, G., Ward, L.A.: Authority rankings from HITS, PageRank, and SALSA: existence, uniqueness, and effect of initialization. SIAM J. Sci. Comput. 27(4), 1181–1201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fedotova, N., Veltri, L.: Reputation management algorithms for DHT-based peer-to-peer environment. COMCOM 32(12), 1400–1409 (2009). doi: http://dx.doi.org/10.1016/j.comcom.2009.03.002

  15. Feldman, M., Chuang, J.: Overcoming free-riding behavior in peer-to-peer systems. ACM SIGecom Exch. 5(4), 41–50 (2005). doi: http://doi.acm.org/10.1145/1120717.1120723

  16. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust incentive techniques for peer-to-peer networks. In: Proceedings 5th ACM Conference Electronic commerce (EC’04), pp. 102–111. ACM, New York (2004). doi: http://doi.acm.org/10.1145/988772.988788

  17. Franceschet, M.: PageRank: standing on the shoulders of giants. Commun. ACM 54(6), 92–101 (2011). doi: http://doi.acm.org/10.1145/1953122.1953146

  18. Gupta, R., Somani, A.K.: Reputation management framework and its use as currency in large-scale peer-to-peer networks. In: Proceedings 4th International Conference Peer-to-Peer Computing (P2P ’04), pp. 124–132. IEEE Computer Society, USA (2004). doi: http://dx.doi.org/10.1109/P2P.2004.44

  19. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with TrustRank. In: Proceedings 30th International Conference Very large data bases (VLDB ’04), pp. 576–587. VLDB Endowment, USA (2004). doi: http://dl.acm.org/citation.cfm?id=1316689.1316740

  20. Jin, X., Chan, S.H.G.: Reputation estimation and query in peer-to-peer networks. IEEE Commun. Mag. 48, 122–127 (2010)

    Article  Google Scholar 

  21. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for reputation management in p2p networks. In: Proceedings 12th International Conference World Wide Web (WWW ’03), pp. 640–651. ACM, New York (2003). doi: http://doi.acm.org/10.1145/775152.775242

  22. Kolda, T.G., Procopio, M.J.: Generalized BadRank with graduated trust. Technical Report SAND2009-6670, Sandia National Laboratories, Albuquerque, NM and Livermore, CA (2009)

    Google Scholar 

  23. Korzun, D., Nechaev, B., Gurtov, A.: Cyclic routing: Generalizing lookahead in peer-to-peer networks. In: AICCSA2009: Proceedings 7th IEEE/ACS International Conference Computer Systems and Applications, pp. 697–704. IEEE Computer Society, USA (2009). doi: http://doi.ieeecomputersociety.org/10.1109/AICCSA.2009.5069403

  24. Landa, R., Griffin, D., Clegg, R.G., Mykoniati, E., Rio, M.: A sybilproof indirect reciprocity mechanism for peer-to-peer networks. In: Proceedings of IEEE INFOCOM’09, pp. 343–351. IEEE, USA (2009). doi: http://dx.doi.org/10.1109/INFCOM.2009.5061938

  25. Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Math. 1(3), 335–380 (2004). URL: http://akpeters.metapress.com/content/bn22r01j43g6q8g6/

  26. Langville, A.N., Meyer, C.D.: A survey of eigenvector methods for web information retrieval. SIAM Rev. 47(1), 135–161 (2005). doi: http://dx.doi.org/10.1137/S0036144503424786

    Google Scholar 

  27. Lian, Q., Peng, Y., Yang, M., Zhang, Z., Dai, Y., Li, X.: Robust incentives via multi-level Tit-for-Tat. Concurr. Comput. Pract. Exper. 20, 167–178 (2008). DOI: 10.1002/cpe.v20:2

    Article  Google Scholar 

  28. Liang, Z., Shi, W.: Analysis of ratings on trust inference in open environments. Perform. Eval. 65(2), 99–128 (2008). doi: http://dx.doi.org/10.1016/j.peva.2007.04.001

  29. Liu, Z., Hu, H., Liu, Y., Ross, K.W., Wang, Y., Mobius, M.: P2P trading in social networks: the value of staying connected. In: Proceedings of IEEE INFOCOM’10, pp. 2489–2497. IEEE, USA (2010)

    Google Scholar 

  30. Manku, G.S., Naor, M., Wieder, U.: Know thy neighbor’s neighbor: the power of lookahead in randomized P2P networks. In: STOC ’04: Proceedings 36th Annual ACM Symposium on Theory of computing, pp. 54–63. ACM, New York (2004). doi: http://doi.acm.org/10.1145/1007352.1007368

  31. Marti, S., Garcia-Molina, H.: Taxonomy of trust: categorizing P2P reputation systems. Comput. Netw. 50(4), 472–484 (2006). doi: http://dx.doi.org/10.1016/j.comnet.2005.07.011

  32. Menasché, D.S., Massoulié, L., Towsley, D.: Reciprocity and barter in peer-to-peer systems. In: Proceedings of IEEE INFOCOM’10, pp. 1505–1513. IEEE, USA (2010)

    Google Scholar 

  33. Naor, M., Wieder, U.: Know thy neighbor’s neighbor: Better routing for skip-graphs and small worlds. In: IPTPS ’04: Proceedings 3rd International Workshop on Peer-to-Peer Systems. Lecture Notes in Computer Science, vol. 3279. Springer, Berlin (2004)

    Google Scholar 

  34. Nechaev, B., Korzun, D., Gurtov, A.: CR-Chord: Improving lookup availability in the presence of malicious DHT nodes. Comput. Netw. 55, 2914–2928 (2011)

    Article  Google Scholar 

  35. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the Web. Technical Report 1999-66, Stanford InfoLab (1999). URL http://ilpubs.stanford.edu:8090/422/. Previous number = SIDL-WP-1999-0120

  36. Piatek, M., Isdal, T., Krishnamurthy, A., Anderson, T.E.: One hop reputations for peer to peer file sharing workloads. In: Proceedings 5th USENIX Symposium on Networked Systems Design & Implementation (NSDI 2008), pp. 1–14. USENIX Association, USA (2008)

    Google Scholar 

  37. Sobek, M.: PR0 — Google’s PageRank 0 penalty (2003). URL: http://pr.efactory.de/e-pr0.shtml. Accessed 26 June 2012

  38. Stroock, D.W.: An Introduction to Markov Processes. Springer, Berlin (2005)

    MATH  Google Scholar 

  39. Yamamoto, A., Asahara, D., Itao, T., Tanaka, S., Suda, T.: Distributed pagerank: A distributed reputation model for open peer-to-peer networks. In: Proceedings 2004 International Symposium on Applications and the Internet Workshops (SAINTW’04), pp. 389–394. IEEE Computer Society, USA (2004). doi: 10.1109/SAINTW.2004.1268664

Download references

Author information

Authors and Affiliations

Authors

10.4 Summary of Part III

10.4 Summary of Part III

This part has discussed some models and methods that allow a node to collect additional knowledge about the global network. The local knowledge scope can be too limited for some problems, especially in a large-scale system. On the other hand, the global knowledge approach is inappropriate since such information typically requires Θ(N 2) storage (representation of the topology graph) and subject to frequent changes due to churn and other dynamic events.

The models and methods we considered provide tradeoffs between local and global knowledge. The problem is often called the partial knowledge problem. Typically, an effective solution to this problem requires that the local knowledge extension is incremental and started from a base P2P protocol. The latter provides default amount of local knowledge per node. If a node is interested it can append its local knowledge with additional information. This extension, as previously, follows some arrangement model to embed effective composition structure into the overall system of many nodes.

As particular cases we considered the following extensions. HDHT architectures is the evolution result of hierarchical routing schemes. Extended knowledge in HDHT is structured with a layered topology structure, an excellent evidence of the generic decomposition principle to prioritize potentially available knowledge. The CR method supports a wide family of DHT routing protocols when nodes can benefit from additional look-ahead information. Local cyclic structure is a snapshot of what is happening beyond the neighbors. Diophantine routing provides the theoretical framework for P2P routing in general. The framework allows formulating particular models that compactly describe certain routes in the P2P overlay, including routes that consists of multiple paths because of multipath routing. Structural ranking is a generic method that a node can locally use for ranking other nodes based on additional information about the network topology. We considered cyclic ranking when this information is represented as a cyclic structure, similarly to the CR method.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korzun, D., Gurtov, A. (2013). Structural Ranking. In: Structured Peer-to-Peer Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5483-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5483-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5482-3

  • Online ISBN: 978-1-4614-5483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics