Introduction to Bifurcation and Stability

  • Mark H. Holmes
Chapter
Part of the Texts in Applied Mathematics book series (TAM, volume 20)

Abstract

On several occasions when working out examples in the earlier chapters, we came across problems that had more than one solution. Such situations are not uncommon when studying nonlinear problems, and we are now going to examine them in detail. The first step is to determine when multiple solutions appear. Once the solutions are found, the next step is to determine if they are stable. Thus, we will focus our attention on what is known as linear stability theory. In terms of perturbation methods, almost all the tools we need were developed in earlier chapters. For example, the analysis of steady-state bifurcation uses only regular expansions (Chap. 1), and the stability arguments will use regular and multiple-scale expansions (Chap. 3). On certain examples, such as when studying relaxation dynamics, we will use matched asymptotic expansions (Chap. 2).

Keywords

Stein Huygens 

References

  1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover, New York, 1972.MATHGoogle Scholar
  2. R. C. Ackerberg and R. E. O’Malley. Boundary layer problems exhibiting resonance. Studies Appl Math, 49:277–295, 1970.MathSciNetMATHGoogle Scholar
  3. D. S. Ahluwalia and J. B. Keller. Exact and asymptotic representations of the sound field in a stratified ocean. In J. B. Keller and J. S. Papadakis, editors, Wave Propagation and Underwater Acoustics, pages 14–85, Berlin, 1977. Springer-Verlag.Google Scholar
  4. G. Akay. Process intensification and miniaturisation, 2010. http://research.ncl.ac.uk/pim/resea.htm.
  5. G. Allaire and R. Brizzi. A multiscale finite element method for numerical homogenization. SIAM Multiscale Model Simul, 4:790–812, 2005.MathSciNetMATHCrossRefGoogle Scholar
  6. O. Arino, M. L. Hbid, and E. A. Dads, editors. Delay Differential Equations and Applications. Springer, Berlin, 2006.MATHGoogle Scholar
  7. T. W. Arnold and W. Case. Nonlinear effects in a simple mechanical system. Am J Phys, 50:220–224, 1982.CrossRefGoogle Scholar
  8. P. Bachmann. Die Analytische Zahlentheorie. Teubner, Leipzig, 1894.MATHGoogle Scholar
  9. A. Baggeroer and W. Munk. The Heard Island feasibility test. Phys. Today, Sept:22–30, 1992.Google Scholar
  10. A. A. Batista and J. M. Carlson. Bifurcations from steady sliding to stick slip in boundary lubrication. Phys. Rev. E, 57(5):4986–4996, May 1998.CrossRefGoogle Scholar
  11. C. M. Bender, K. Olaussen, and P. S. Wang. Numerological analysis of the WKB approximation in large order. Phys Rev D, 16:1740–1748, 1977.MathSciNetCrossRefGoogle Scholar
  12. V. S. Berman. On the asymptotic solution of a nonstationary problem on the propagation of a chemical reaction front. Dokl Akad Nauk SSSR, 242, 1978.Google Scholar
  13. J. Bernoulli. Meditationes de chordis vibrantibus. Comment. Acad. Sci. Imper. Petropol., 3:13–28, 1728.Google Scholar
  14. F. W. Bessel. Untersuchung des thiels der planetarischen stroungen, welcher aus der bewegung der sonne entsteht. Abh. Akad. Wiss. Berlin, math. Kl., pages 1–52, 1824.Google Scholar
  15. W. Bleakney, D. K. Weimer, and C. H. Fletcher. The shock tube: a facility for investigations in fluid dynamics. Rev Sci Instr, 20:807–815, 1949.CrossRefGoogle Scholar
  16. N. Boccara. Essentials of Mathematica: With Applications to Mathematics and Physics. Springer, New York, 2007.Google Scholar
  17. M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge, 7th edition, 1999.CrossRefGoogle Scholar
  18. S. Borowitz. Fundamentals of Quantum Mechanics. Benjamin, New York, 1967.MATHGoogle Scholar
  19. M. Bouthier. Comparison of the matched asymptotic expansions method and the two-variable technique. Q Appl Math, 41:407–422, 1984.MathSciNetMATHGoogle Scholar
  20. M. Braun. Differential Equations and Their Applications: An Introduction to Applied Mathematics. Springer, New York, 4th edition, 1993.MATHGoogle Scholar
  21. P. A. Braun. WKB method for three-term recursion relations and quasienergies of an anharmonic oscillator. Theor Math Phys, 37:1070–1081, 1979.CrossRefGoogle Scholar
  22. H. Bremmer and S. W. Lee. Propagation of a geometrical optics field in an isotropic inhomogeneous medium. Radio Sci, 19:243–257, 1984.CrossRefGoogle Scholar
  23. D. Broutman, J. W. Rottman, and S. D. Eckermann. Ray methods for internal waves in the atmosphere and ocean. Annu. Rev. Fluid Mech., 36:233–253, 2004.MathSciNetCrossRefGoogle Scholar
  24. D. L. Brown and J. Lorenz. A high-order method for stiff boundary value problems with turning points. SIAM J Sci Stat Comput, 8:790–805, 1987.MathSciNetMATHCrossRefGoogle Scholar
  25. R. Burridge and J. B. Keller. Poroelasticity equations derived from microstructure. J Acoust Soc Am, 70:1140–1146, 1981.MATHCrossRefGoogle Scholar
  26. R. Burridge and H. Weinberg. Horizontal rays and vertical modes. In J. B. Keller and J. S. Papadakis, editors, Wave Propagation and Underwater Acoustics, pages 86–152, Springer, Berlin, 1977.CrossRefGoogle Scholar
  27. I. A. Butt and J. A.D. Wattis. Asymptotic analysis of combined breather-kink modes in a Fermi-Pasta-Ulam chain. Physica D, 231(2):165–179, 2007.MathSciNetMATHCrossRefGoogle Scholar
  28. R. Carles. Semi-classical analysis for nonlinear Schrodinger equations. World Scientific, Singapore, 2008.CrossRefGoogle Scholar
  29. G. F. Carrier, M. Krook, and C. E. Pearson. Functions of a Complex Variable: Theory and Technique. McGraw-Hill, New York, 1966.MATHGoogle Scholar
  30. E. R. Carson, C. Cobelli, and L. Finkelstein. The Mathematical Modeling of Metabolic and Endocrine Systems. Wiley, New York, 1983.Google Scholar
  31. T. K. Caughey. Large amplitude whirling of an elastic string: a nonlinear eigenvalue problem. SIAM J Applied Math, 18:210–237, 1970.MathSciNetMATHCrossRefGoogle Scholar
  32. V. Cerveny. Seismic Ray Theory. Cambridge University Press, Cambridge, 2001.MATHCrossRefGoogle Scholar
  33. D. M. Christodoulou and R. Narayan. The stability of accretion tori. IV: Fission and fragamentation of slender self-gravitating annuli. Astrophys J, 388:451–466, 1992.Google Scholar
  34. J. D. Cole. Perturbation Methods in Applied Mathematics. Blaisdell, Waltham, MA, 1968.MATHGoogle Scholar
  35. J. D. Cole and L. P. Cook. Transonic Aerodynamics. Elsevier, Amsterdam, 1986.MATHGoogle Scholar
  36. J. D. Cole and J. Kevorkian. Uniformly valid asymptotic approximations for certain differential equations. In J. P. LaSalle and S. Lefschetz, editors, Nonlinear Differential Equations and Nonlinear Mechanics, pages 113–120, Academic, New York, 1963.CrossRefGoogle Scholar
  37. J. B. Collings and D. J. Wollkind. A global analysis of a temperature-dependent model system for a mite predator-prey interaction. SIAM J Appl Math, 50:1348–1372, 1990.MathSciNetMATHCrossRefGoogle Scholar
  38. J. M. Combes, P. Duclos, and R. Seiler. On the shape resonance. In L. S. Ferreira S. Albeverio and L. Streit, editors, Resonances – Models and Phenomena, pages 64–77, Springer, Berlin, 1984.Google Scholar
  39. C. Comstock and G. C. Hsiao. Singular perturbations for difference equations. Rocky Mtn J Math, 6:561–567, 1976.MathSciNetMATHCrossRefGoogle Scholar
  40. A. Comtet, A. D. Bandrauk, and D. K. Cambell. Exactness of semiclassical bound state energies for supersymmetric quantum mechanics. Phys Lett B, 150:159–162, 1985.MathSciNetCrossRefGoogle Scholar
  41. C. Conca and M. Vanninathan. Homogenization of periodic structures via bloch decomposition. SIAM J Applied Math, 57(6):pp. 1639–1659, 1997.MathSciNetMATHCrossRefGoogle Scholar
  42. L. P. Cook and G. S. S. Ludford. The behavior as ε → 0 +  of solutions to ε ∇ 2 w = ∂w ∕ ∂y in | y | ≦ 1 for discontinuous boundary data. SIAM J. Math. Anal., 2(4):567–594, 1971.MathSciNetMATHCrossRefGoogle Scholar
  43. L. P. Cook and G. S. S. Ludford. The behavior as ε → 0 +  of solutions to ε ∇ 2 w = ( ∕ ∂y)w on the rectangle 0 ≦ x ≦ l, | y | ≦ 1. SIAM J. Math. Anal., 4(1):161–184, 1973.MathSciNetCrossRefGoogle Scholar
  44. R. J. Cook. Quantum jumps. In E. Wolf, editor, Progress in Optics, Vol XXVIII, pages 361–416, Amsterdam, 1990. North-Holland.Google Scholar
  45. O. Costin and R. Costin. Rigorous WKB for finite-order linear recurrence relations with smooth coefficients. SIAM J. Math. Anal., 27(1):110–134, 1996.MathSciNetMATHCrossRefGoogle Scholar
  46. M. G. Crandall and P. H. Rabinowitz. Mathematical theory of bifurcation. In C. Bardos and D. Bessis, editors, Bifurcation Phenomena in Mathematical Physics and Related Topics, pages 3–46, Boston, 1980. D. Reidel Pub Co.Google Scholar
  47. J. M. Cushing. Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics. Springer, Berlin, 1977.MATHCrossRefGoogle Scholar
  48. T. Dauxois, M. Peyrard, and C. R. Willis. Localized breather-like solution in a discrete Klein–Gordon model and application to DNA. Physica D, 57:267–282, 1992.MathSciNetMATHCrossRefGoogle Scholar
  49. P. P. N. De Groen. The nature of resonance in a singular perturbation problem of turning point type. SIAM J Math Anal, 11:1–22, 1980.MathSciNetMATHCrossRefGoogle Scholar
  50. E. de Micheli and G. Viano. The evanescent waves in geometrical optics and the mixed hyperbolic-elliptic type systems. Appl Anal, 85:181–204, 2006.MathSciNetMATHCrossRefGoogle Scholar
  51. L. Debnath. Nonlinear Partial Differential Equations for Scientists and Engineers. Springer, New York, 3rd edition, 2012.MATHCrossRefGoogle Scholar
  52. V. Denoel and E. Detournay. Multiple scales solution for a beam with a small bending stiffness. J Eng Mech, 136(1):69–77, 2010.CrossRefGoogle Scholar
  53. A. J. DeSanti. Nonmonotone interior layer theory for some singularly perturbed quasilinear boundary value problems with turning points. SIAM J Math Anal, 18: 321–331, 1987.MathSciNetMATHCrossRefGoogle Scholar
  54. E. D’Hoker and R. Jackiw. Classical and quantal Liouville field theory. Phys Rev D, 26: 3517–3542, 1982.MathSciNetCrossRefGoogle Scholar
  55. R. B. Dingle and G. J. Morgan. WKB methods for difference equations i. Appl Sci Res, 18:221–237, 1967a.MathSciNetMATHCrossRefGoogle Scholar
  56. R. B. Dingle and G. J. Morgan. WKB methods for difference equations ii. Appl Sci Res, 18:238–245, 1967b.MathSciNetCrossRefGoogle Scholar
  57. R. J. DiPerna and A. Majda. The validity of nonlinear geometric optics for weak solutions of conservation laws. Comm Math Phys, 98:313–347, 1985.MathSciNetCrossRefGoogle Scholar
  58. R. C. DiPrima. Asymptotic methods for an infinitely long slider squeeze-film bearing. J Lub Tech, 90:173–183, 1968.CrossRefGoogle Scholar
  59. R. C. DiPrima, W. Eckhaus, and L. A. Segel. Non-linear wave-number interaction in near-critical two-dimensional flows. J Fluid Mech, 49:705–744, 1971.MATHCrossRefGoogle Scholar
  60. J. L. Dunham. The Wentzel-Brillouin-Kramers method of solving the wave equation. Phys Rev, 41:713–720, 1932.CrossRefGoogle Scholar
  61. T. M. Dunster. Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. R. Soc. Lond. A, 452(1949):1331–1349, 1996.MathSciNetMATHCrossRefGoogle Scholar
  62. B. D. Dushaw, P. F. Worcester, W. H. Munk, R. C. Spindel, J. A. Mercer, B. M. Howe, K. Metzger, T. G. Birdsall, R. K. Andrew, M. A. Dzieciuch, B. D. Cornuelle, and D. Menemenlis. A decade of acoustic thermometry in the north pacific ocean. J. Geophys. Res., 114:C07021, 2009.CrossRefGoogle Scholar
  63. R. Dutt, A. Khare, and U. P. Sukhatme. Supersymmetry-inspired WKB approximation in quantum mechanics. Am J Phys, 59:723–727, 1991.CrossRefGoogle Scholar
  64. W. Eckhaus and E. M. d. Jager. Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type. Arch Rational Mech Anal, 23:26–86, 1966.Google Scholar
  65. L. Edelstein-Keshet. Mathematical Models in Biology. Society for Industrial and Applied Mathematics, Philadelphia, 2005.MATHCrossRefGoogle Scholar
  66. S. N. Elaydi. An introduction to difference equations. Springer, New York, 5th edition, 2005.MATHGoogle Scholar
  67. B. Engquist and P. E. Souganidis. Asymptotic and numerical homogenization. Acta Numer, 17:147–190, 2008.MathSciNetMATHCrossRefGoogle Scholar
  68. U. Erdmann, W. Ebeling, and A. S. Mikhailov. Noise-induced transition from translational to rotational motion of swarms. Phys Rev E, 71(5):051904, May 2005.Google Scholar
  69. A. C. Eringen. On the non-linear vibration of elastic bars. Q Applied Math IX, pages 361–369, 1952.Google Scholar
  70. G. B. Ermentrout. Oscillator death in populations of “all to all” coupled nonlinear oscillators. Physica D, 41(2):219–231, 1990.MathSciNetMATHCrossRefGoogle Scholar
  71. L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive Solutio problematis isoperimetrici latissimo sensu accepti. Apud Marcum-Michaelem Bousquet and Socios, Lausanne, 1774.Google Scholar
  72. P. A. Farrell. Sufficient conditions for uniform convergence of a class of difference schemes for a singularly perturbed problem. IMA J Num Anal, 7:459–472, 1987.MATHCrossRefGoogle Scholar
  73. M.V. Fedoryuk. Equations with rapidly oscillating solutions. In M.V. Fedoryuk, editor, Partial Differential Equations V: Asymptotic Methods for Partial Differential Equations, volume 34, pages 1–52, Berlin, 1999. Springer.Google Scholar
  74. L. K. Forbes. Forced transverse oscillations in a simple spring-mass system. SIAM J Appl Math, 51:1380–1396, 1991.Google Scholar
  75. W. B. Ford. Studies on Divergent Series and Summability. Macmillan, New York, 1916.MATHGoogle Scholar
  76. L. E. Fraenkel. On the method of matched asymptotic expansions. I: A matching principle. Proc Cambridge Philos Soc, 65:209–231, 1969.Google Scholar
  77. K. O. Friedrichs. The mathematical structure of the boundary layer problem. In R. v. Mises and K. O. Friedrichs, editors, Fluid Mechanics, pages 171–174, Providence, RI, 1941. Brown University.Google Scholar
  78. G. Frisk, D. Bradley, J. Caldwell, G. D’Spain, J. Gordon, M. Hastings, D. Hastings, J. Miller, D. L. Nelson, A. N. Popper, and D. Wartzok. Ocean Noise and Marine Mammals. National Academic Press, Washington, D.C., 2003.Google Scholar
  79. Y. C. Fung. Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ, 1965.Google Scholar
  80. N. Ganapathisubramanian and K. Showalter. Relaxation behavior in a bistable chemical system near the critical point and hysteresis limits. J Chem Phys, 84:5427–5436, 1986.CrossRefGoogle Scholar
  81. R. Gans. Fortpflanzung des lichts durch ein inhomogenes medium. Ann Phys (Lpz.), 47: 709–738, 1915.Google Scholar
  82. C. Gao and D. Kuhlmann-Wilsdorf. On stick-slip and velocity dependence of friction at low speeds. J Tribol, 112:354–360, 1990.CrossRefGoogle Scholar
  83. M.J. Garlick, J.A. Powell, M.B. Hooten, and L.R. McFarlane. Homogenization of large-scale movement models in ecology. Bull Math Biol, 73(9):2088–2108, 2011.MathSciNetMATHCrossRefGoogle Scholar
  84. J. F. Geer and J. B. Keller. Uniform asymptotic solutions for potential flow around a thin airfoil and the electrostatic potential about a thin conductor. SIAM J Appl Math, 16: 75–101, 1968.MATHCrossRefGoogle Scholar
  85. J. S. Geronimo and D. T. Smith. WKB (Liouville-Green) analysis of second order difference equations and applications. J Approx Theory, 69:269–301, 1992.MathSciNetMATHCrossRefGoogle Scholar
  86. M. Gilli, M. Bonnin, and F. Corinto. Weakly connected oscillatory networks for dynamic pattern recognition. In R. A. Carmona and G. Linan-Cembrano, editors, Bioengineered and Bioinspired Systems II. Proceedings of SPIE, volume 5839, pages 274–285, 2005.Google Scholar
  87. G. M. L. Gladwell. Contact Problems in the Classical Theory of Elasticity. Sijthoff and Noordhoff, Germantown, MD, 1980.MATHGoogle Scholar
  88. J. Goodman and Z. Xin. Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch Rational Mech Anal, 121:235–265, 1992.MathSciNetMATHCrossRefGoogle Scholar
  89. V. F. Goos and H. Hanchen. Ein neuer und fundamentaler versuch zur totalreflexion. Annalen der Physik, 436:333–346, 1947.CrossRefGoogle Scholar
  90. P. Gray and S. K. Scott. Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics. Oxford University Press, Oxford, 1994.Google Scholar
  91. P. Gray, S. K. Scott, and J. H. Merkin. The Brusselator model of oscillatory reactions. J Chem Soc, Faraday Trans, 84:993–1012, 1988.Google Scholar
  92. R. M. Green. Spherical Astronomy. Cambridge University Press, Cambridge, 1985.Google Scholar
  93. P. A. Gremaud and C. M. Kuster. Computational study of fast methods for the eikonal equation. SIAM J. Sci. Comput., 27:1803–1816, 2006.MathSciNetMATHCrossRefGoogle Scholar
  94. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, 1983.MATHGoogle Scholar
  95. R. B. Guenther and J. W. Lee. Partial Differential Equations of Mathematical Physics and Integral Equations. Dover, New York, 1996.Google Scholar
  96. J. K. Hale and H. Kocak. Dynamics and Bifurcations. Springer, New York, 1991.MATHCrossRefGoogle Scholar
  97. G. H. Hardy. Orders of Infinity. Cambridge University Press, Cambridge, 2nd edition, 1954.Google Scholar
  98. S. Haszeldine. Diagenesis research at Edinburgh, 2010. http://www.geos.ed.ac.uk/research/subsurface/diagenesis/.
  99. J. Heading. An Introduction to Phase-Integral Methods. Methuen, London, 1962.MATHGoogle Scholar
  100. J. H. Heinbockel and R. A. Struble. Resonant oscillations of an extensible pendulum. ZAMP, 14:262–269, 1963.MATHCrossRefGoogle Scholar
  101. D. Hester. The nonlinear theory of a class of transistor oscillators. IEEE Trans Circuit Theory, 15:111–117, 1968.CrossRefGoogle Scholar
  102. M. H. Holmes. A mathematical model of the dynamics of the inner ear. J Fluid Mech, 116:59–75, 1982.MathSciNetMATHCrossRefGoogle Scholar
  103. M. H. Holmes. A theoretical analysis for determining the nonlinear permeability of soft tissue from a permeation experiment. Bull Math Biol, 47:669–683, 1985.Google Scholar
  104. M. H. Holmes. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. J Biomech Eng, 108:372–381, 1986.CrossRefGoogle Scholar
  105. M. H. Holmes. Nonlinear ionic diffusion in polyelectrolyte gels: an analysis based on homogenization. SIAM J Appl Math, 50:839–852, 1990.MathSciNetMATHCrossRefGoogle Scholar
  106. M. H. Holmes. Introduction to Numerical Methods in Differential Equations. Springer, Berlin, 2007.MATHCrossRefGoogle Scholar
  107. M. H. Holmes. Introduction to the Foundations of Applied Mathematics. Springer, Berlin, 2009.MATHCrossRefGoogle Scholar
  108. M. H. Holmes and F. M. Stein. Sturmian theory and transformations for the Riccati equation. Port Math, 35:65–73, 1976.MathSciNetMATHGoogle Scholar
  109. J. W. Hooker and W. T. Patula. Riccati type transformations for second-order linear difference equations. J Math Anal Appl, 82:451–462, 1981.MathSciNetMATHCrossRefGoogle Scholar
  110. F. C. Hoppensteadt. Mathematical Methods in Population Biology. Cambridge University Press, Cambridge, 1982.CrossRefGoogle Scholar
  111. F. C. Hoppensteadt and E. M. Izhikevich. Weakly connected neural networks. Springer, Berlin, 1997.CrossRefGoogle Scholar
  112. F. C. Hoppensteadt and E. M. Izhikevich. Oscillatory neurocomputers with dynamic connectivity. Phys Rev Lett, 82(14):2983–2986, Apr 1999.CrossRefGoogle Scholar
  113. F. C. Hoppensteadt and W. L. Miranker. Multitime methods for systems of difference equations. Stud Appl Math, 56:273–289, 1977.MathSciNetGoogle Scholar
  114. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge 1990.MATHGoogle Scholar
  115. P. Horwitz and W. Hill. The Art of Electronics. Cambridge University Press, Cambridge, 2nd edition, 1989.Google Scholar
  116. F. A. Howes. Boundary-interior layer interactions in nonlinear singular perturbation theory. Memoirs of the American Mathematical Society. American Math Society, Providence, RI, 1978.Google Scholar
  117. C. J. Howls. Exponential asymptotics and boundary-value problems: keeping both sides happy at all orders. Proc. R. Soc. A, 466(2121):2771–2794, 2010.MathSciNetMATHCrossRefGoogle Scholar
  118. J. S. Hubert and E. Sanchez-Palencia. Vibration and Coupling of Continuous Systems: Asymptotic methods. Springer, Berlin, 1989.MATHCrossRefGoogle Scholar
  119. G. E. Hutchinson. Circular causal systems in ecology. In R. W. Miner, editor, Annals of the New York Academy of Science, pages 221–246, New York, 1948. New York Academy of Science.Google Scholar
  120. I. Idris and V. N. Biktashev. Analytical approach to initiation of propagating fronts. Phys. Rev. Lett., 101(24):244101, Dec 2008.Google Scholar
  121. A. M. Il’in. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translations of Mathematical Monographs v102. American Math Society, Providence, 1992.Google Scholar
  122. T. Imbo and U. Sukhatme. Logarithmic perturbation expansions in nonrelativistic quantum mechanics. Am J Phys, 52:140–146, 1984.CrossRefGoogle Scholar
  123. G. Iooss and G. James. Localized waves in nonlinear oscillator chains. Chaos, 15(1): 015113, 2005.Google Scholar
  124. N. Ishimura. On steady solutions of the Kuramoto-Sivashinsky equation. In R. Salvi, editor, The Navier-Stokes Equations: Theory and Numerical Methods, pages 45–52. Marcel Dekker, 2001.Google Scholar
  125. A. K. Kapila. Asymptotic Treatment of Chemically Reacting Systems. Pitman, Boston, 1983.Google Scholar
  126. D. R. Kassoy. Extremely rapid transient phenomena in combustion, ignition and explosion. In R. E. O’Malley, editor, Asymptotic Methods and Singular Perturbations, pages 61–72, Rhode Island, 1976. American Math Society.Google Scholar
  127. T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin, 1995.MATHGoogle Scholar
  128. J. P. Keener. Analog circuitry for the van der Pol and FitzHugh-Nagumo equations. IEEE Trans Syst Man Cybern, SMC-13:1010–1014, 1983.MathSciNetCrossRefGoogle Scholar
  129. J. B. Keller and S. Kogelman. Asymptotic solutions of initial value problems for nonlinear partial differential equations. SIAM J Appl Math, 18:748–758, 1970.MathSciNetMATHCrossRefGoogle Scholar
  130. J. B. Keller and R. M. Lewis. Asymptotic methods for the partial differential equations: The reduced wave equation and Maxwell’s equations. In J. B. Keller, D. W. McLaughlin, and G. C. Papanicolaou, editors, Surveys in Applied Mathematics: Volume 1, pages 1–82, New York, 1995. Plenum Press.Google Scholar
  131. J. Kevorkian and J. D. Cole. Perturbation Methods in Applied Mathematics. Springer, New York, 1981.MATHCrossRefGoogle Scholar
  132. J. R. King, M. G. Meere, and T. G. Rogers. Asymptotic analysis of a non-linear model for substitutional diffusion in semiconductors. Z angew Math Phys, 43:505–525, 1992.MathSciNetCrossRefGoogle Scholar
  133. W. Klimesch, R. Freunberger, and P. Sauseng. Oscillatory mechanisms of process binding in memory. Neurosci Biobehav Rev, 34(7):1002–1014, 2010.CrossRefGoogle Scholar
  134. M. Kline. A note on the expansion coefficient of geometrical optics. Comm Pure Appl Math, XIV:473–479, 1961.Google Scholar
  135. C. Knessl. The WKB approximation to the G/M/m queue. SIAM J Appl Math, 51: 1119–1133, 1991.MathSciNetMATHCrossRefGoogle Scholar
  136. C. Knessl and J. B. Keller. Asymptotic properties of eigenvalues of integral equations. SIAM J Appl Math, 51:214–232, 1991a.MathSciNetMATHCrossRefGoogle Scholar
  137. C. Knessl and J. B. Keller. Stirling number asymptotics from recursion equations using the ray method. Stud Appl Math, 84:43–56, 1991b.MathSciNetMATHGoogle Scholar
  138. L. P. Kollar and G. S. Springer. Mechanics of Composite Structures. Cambridge University Press, Cambridge, 2003.CrossRefGoogle Scholar
  139. A. Kolmogorov, I. Petrovsky, and N. Piskunov. Étude de l’équation de la diffusion avec croissance de la quantité de la matière et son application à un pròbleme biologique. Bulletin Universitè d’Etat à Moscou, A1:1–26, 1937.Google Scholar
  140. B. Krauskopf, H. M. Osinga, and Jorge G.-V. Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems. Springer, 2007.Google Scholar
  141. Y. A. Kravtsov. Geometrical Optics in Engineering Physics. Alpha Science International, 2005.Google Scholar
  142. G. E. Kuzmak. Asymptotic solutions of nonlinear second order differential equations with variable coefficients. J Appl Math Mech (PMM), 23:730–744, 1959.Google Scholar
  143. P. A. Lagerstrom. Matched Asymptotic Expansions: Ideas and Techniques. Springer, New York, 1988.MATHCrossRefGoogle Scholar
  144. E. Landau. Handbuch der Lehre von der Verteilung der Primzahlen. Teubner, Berlin, 1909.Google Scholar
  145. C. G. Lange and R. M. Miura. Singular perturbation analysis of boundary value problems for differential-difference equations. IV: A nonlinear example with layer behavior. Stud Appl Math, 84:231–273, 1991.Google Scholar
  146. R. E. Langer. On the asymptotic solutions of ordinary differential equations, with an application to the Bessel functions of large order. Trans Math Soc, 33:23–64, 1931.CrossRefGoogle Scholar
  147. P.-S. Laplace. Théorie Analytique des Probabilités. Mme Ve Courcier, 1812.Google Scholar
  148. R. W. Lardner. The formation of shock waves in Krylov-Bogoliubov solutions of hyperbolic partial differential equations. J Sound Vib, 39:489–502, 1975.MATHCrossRefGoogle Scholar
  149. G. E. Latta. Singular perturbation problems. PhD thesis, California Institute of Technology, 1951.Google Scholar
  150. C. F. Lee. Singular perturbation analysis of a reduced model for collective motion: a renormalization group approach. Phys. Rev. E, 83(3):031127, Mar 2011.Google Scholar
  151. K. K. Lee. Lectures on Dynamical Systems, Structural Stability and their Applications. World Scientific, Singapore, 1992.MATHCrossRefGoogle Scholar
  152. A. M. Legendre. Traité des Fonctions Elliptiques. Huzard-Courcier, 1825.Google Scholar
  153. H. Leipholz. Stability Theory. Teubner, 2nd edition, 1987.Google Scholar
  154. A. W. Leissa and A. M. Saad. Large amplitude vibrations of strings. J Appl Mech, 61: 296–301, 1994.MATHCrossRefGoogle Scholar
  155. U. Leonhardt and T. G. Philbin. Perfect imaging with positive refraction in three dimensions. Phys. Rev. A, 81:011804, Jan 2010.CrossRefGoogle Scholar
  156. M. Leontovich and V. Fock. Solution of the problem of electromagnetic wave propagation along the earth’s surface by the method of parabolic equation. J Phys USSR, 10:13–24, 1946.MathSciNetMATHGoogle Scholar
  157. N. Levinson. The first boundary value problem for ε △ u + a(x, y)u x + b(x, y)u y + c(x, y)u = d(x, y) for small ε. Ann Math, 51:428–445, 1950.MathSciNetMATHCrossRefGoogle Scholar
  158. J. Lewis, J. M. W. Slack, and L. Wolpert. Thresholds in development. J Theor Biol, 65: 579–590, 1977.CrossRefGoogle Scholar
  159. R. M. Lewis. Asymptotic theory of wave-propagation. Arch Rational Mech Anal, 20: 191–250, 1966.CrossRefGoogle Scholar
  160. G. C. Lie and J.-M. Yuan. Bistable and chaotic behavior in a damped driven Morse oscillator: A classical approach. J Chem Phys, 84:5486–5493, 1986.CrossRefGoogle Scholar
  161. M. J. Lighthill. A technique for rendering approximate solutions to physical problems uniformly valid. Philos Mag, XL:1179–1201, 1949.Google Scholar
  162. M. J. Lighthill. Viscosity effects in sound waves of finite amplitude. In G. K. Batchelor and R. M. Davies, editors, Surveys in Mechanics, pages 250–351, Cambridge, 1956. Cambridge University Press.Google Scholar
  163. M. J. Lighthill. Group velocity. J Inst Math Appl, 1:1–28, 1965.MathSciNetCrossRefGoogle Scholar
  164. A. Lindstedt. ϋber die integration einer für die störungstheorie wichtigen differentialgleichung. Astron Nachr, 103:211–220, 1882.Google Scholar
  165. T. Linss, H.-G. Roos, and R. Vulanovic. Uniform pointwise convergence on shishkin-type meshes for quasi-linear convection-diffusion problems. SIAM J. Numer. Anal., 38(3): 897–912, 2000.MathSciNetMATHCrossRefGoogle Scholar
  166. J. Lorentz. Nonlinear boundary value problems with turning points and properties of difference schemes. In W. Eckhaus and E. M. d. Jager, editors, Theory and Applications of Singular Perturbations, pages 150–169, Berlin, 1982. Springer.Google Scholar
  167. D. Ludwig. Uniform asymptotic expansions at a caustic. Comm Pure Appl Math, 20: 215–250, 1966.MathSciNetCrossRefGoogle Scholar
  168. J. C. Luke. A perturbation method for nonlinear dispersive wave problems. Proc R Soc Lond A, 292:403–412, 1966.MathSciNetMATHCrossRefGoogle Scholar
  169. A. D. MacGillivray. Analytic description of the condensation phenomenon near the limit of infinite dilution based on the Poisson-Boltzmann equation. J Chem Phys, 56:83–85, 1972.CrossRefGoogle Scholar
  170. A. D. MacGillivray. Justification of matching with the transition expansion of van der Pol’s equation. SIAM J Math Anal, 21:221–240, 1990.MathSciNetMATHCrossRefGoogle Scholar
  171. A. D. MacGillivray. A method for incorporating transcendentally small terms into the method of matched asymptotic expansions. Stud Appl Math, 99(3):285–310, 1997.MathSciNetMATHCrossRefGoogle Scholar
  172. G. M. Maggio, O. de Feo, and M. P. Kennedy. A general method to predict the amplitude of oscillation in nearly-sinusoidal oscillators. IEEE Trans Circuits Syst, 51:1586–1595, 2004.CrossRefGoogle Scholar
  173. P. A. Markowich, C. A. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, New York, 1990.MATHCrossRefGoogle Scholar
  174. B. E. McDonald and W. A. Kuperman. Time domain solution of the parabolic equation including nonlinearity. Comp Math, 11:843–851, 1985.MathSciNetMATHGoogle Scholar
  175. J. A. M. McHugh. An historical survey of ordinary linear differential equations with a large parameter and turning points. Arch History Exact Sci, 7:277–324, 1971.MathSciNetMATHCrossRefGoogle Scholar
  176. C. C. Mei and B. Vernescu. Homogenization Methods for Multiscale Mechanics. World Scientific, Singapore, 2010.MATHCrossRefGoogle Scholar
  177. MEIAF. Micro-environmental imaging and analysis facility, 2010. http://www.bren.ucsb.edu/facilities/meiaf/.
  178. R. Merlin. Maxwell’s fish-eye lens and the mirage of perfect imaging. J Opt, 13(2):024017, 2011.Google Scholar
  179. R. E. Mickens. Difference Equations: Theory and Applications. Van Nostrand Reinhold, New York, 2nd edition, 1990.MATHGoogle Scholar
  180. N. Minorsky. Introduction to Non-linear Mechanics: Topological Methods, Analytical Methods, Non-linear Resonance, Relaxation Oscillations. Edwards, Ann Arbor, MI, 1947.Google Scholar
  181. T. Mitani. Stable solution of nonlinear flame shape equation. Combustion Sci Tech, 36: 235–247, 1984.CrossRefGoogle Scholar
  182. M. P. Mortell and E. Varley. Finite amplitude waves in bounded media: nonlinear free vibrations of an elastic panel. Proc R Soc Lond A, 318:169–196, 1970.MathSciNetMATHCrossRefGoogle Scholar
  183. T. J. Moser, G. Nolet, and R. Snieder. Ray bending revisited. Bull Seism Soc Am, 82: 259–288, 1992.Google Scholar
  184. W. H. Munk, R. C. Spindel, A. Baggeroer, and T. G. Birdsall. The Heard Island feasibility test. J. Acoust. Soc. Am., 96:2330–2342, 1992.CrossRefGoogle Scholar
  185. J. A. Murdock. Perturbations: Theory and Methods. Classics in Applied Mathematics. SIAM, New York, 1999.MATHCrossRefGoogle Scholar
  186. J. D. Murray. Asymptotic Analysis. Springer, New York, 1984.MATHCrossRefGoogle Scholar
  187. J. D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin, 3rd edition, 2003.Google Scholar
  188. J. D. Murray and A. B. Tayler. An asymptotic solution of a class of nonlinear wave equations: a model for the human torso under impulsive stress. SIAM J Appl Math, 18:792–809, 1970.MATHCrossRefGoogle Scholar
  189. C. J. Myerscough. A simple model of the growth of wind-induced oscillations in overhead lines. J Sound Vib, 28:699–713, 1973.MATHCrossRefGoogle Scholar
  190. A. H. Nayfeh. Perturbation Methods. Wiley, New York, 1973.MATHGoogle Scholar
  191. Z. Neda, E. Ravasz, Y. Brechet, T. Vicsek, and A.-L. Barabasi. Self-organizing processes: the sound of many hands clapping. Nature, 403:849–850, 2000.CrossRefGoogle Scholar
  192. D. J. Ness. Small oscillations of a stabilized, inverted pendulum. Am J Phys, 35:964–967, 1967.CrossRefGoogle Scholar
  193. A. M. Nobili and C. M. Will. The real value of Mercury’s perihelion advance. Nature, 320:39–41, 1986.CrossRefGoogle Scholar
  194. K. B. Oldham, J. Myland, and J. Spanier. An Atlas of Functions. Springer, 2nd edition, 2009.Google Scholar
  195. F. W. J. Olver. Introduction to Asymptotics and Special Functions. Academic, New York, 1974.MATHGoogle Scholar
  196. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge, 2010.MATHGoogle Scholar
  197. R. E. O’Malley. Singular perturbation theory: a viscous flow out of Göttingen. In Annu Rev Fluid Mech, volume 42, pages 1–17, 2010.Google Scholar
  198. C. H. Ou and R. Wong. On a two-point boundary-value problem with spurious solutions. Stud Appl Math, 111(4):377–408, 2003.MathSciNetMATHCrossRefGoogle Scholar
  199. J. Pantaleone. Synchronization of metronomes. Am J Phys, 70(10):992–1000, 2002.CrossRefGoogle Scholar
  200. J. C. B. Papaloizou and J. E. Pringle. The dynamical stability of differentially rotating discs - iii. Monthly Notices R Astron Soc, 225:267–283, 1987.MATHGoogle Scholar
  201. M. Parang and M. C. Jischke. Adiabatic ignition of homogeneous systems. AIAA J, 13: 405–408, 1975.MATHCrossRefGoogle Scholar
  202. D. Park. Classical Dynamics and its Quantum Analogues. Springer, Berlin, 2nd edition, 1990.MATHCrossRefGoogle Scholar
  203. W. T. Patula. Growth and oscillation properties of second order linear difference equations. SIAM J Math Anal, 10:55–61, 1979.MathSciNetMATHCrossRefGoogle Scholar
  204. G. Pavliotis and A. M. Stuart. Multiscale Methods: Averaging and Homogenization. Texts in Applied Mathematics. Springer, Berline, 2008.MATHGoogle Scholar
  205. R. Penrose. A generalized inverse for matrices. Proc Cambridge Philos Soc, 51:406–413, 1955.MathSciNetMATHCrossRefGoogle Scholar
  206. V. Pereyra, Lee, W. H. K., and H. B. Keller. Solving two-point seismic-ray tracing problems in a heterogeneous medium. I: A general adaptive finite difference method. Bull Seism Soc Am, 70:79–99, 1980.Google Scholar
  207. C. S. Peters and M. Mangel. New methods for the problem of collective ruin. SIAM J Appl Math, 50:1442–1456, 1990.MathSciNetMATHCrossRefGoogle Scholar
  208. A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
  209. E. Pinney. Ordinary Difference-Differential Equations. University of California Press, 1958.Google Scholar
  210. P. Plaschko. Matched asymptotic approximations to solutions of a class of singular parabolic differential equations. Z angew Math Mech, 70:63–64, 1990.MathSciNetCrossRefGoogle Scholar
  211. H. Poincaré. Sur les intégrales irrégulières des équations linéaires. Acta Math, 8: 295–344, 1886.MathSciNetMATHCrossRefGoogle Scholar
  212. K. Popp and P. Stelter. Stick-slip vibrations and chaos. Philos Trans R Soc Lond A, 332: 89–105, 1990.MATHCrossRefGoogle Scholar
  213. J. F. A. Poulet and C. H. Petersen. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature, 454:881– 885, 2008.CrossRefGoogle Scholar
  214. L. Prandtl. ϋber Flüssigkeitsbewegung bei sehr kleiner Reibung. In A. Krazer, editor, Verhandlungen des Dritten Internationalen Mathematiker-Kongresses, Heidelberg 1904, pages 484–491, Leipzig, 1905. B. G. Teubner.Google Scholar
  215. R. D. Rabbitt and M. H. Holmes. Three-dimensional acoustic waves in the ear canal and their interaction with the tympanic membrane. J Acoust Soc Am, 83:1064–1080, 1988.MathSciNetCrossRefGoogle Scholar
  216. M. Rafei and W. Van Horssen. On asymptotic approximations of first integrals for second order difference equations. Nonlinear Dyn, 61:535–551, 2010.MATHCrossRefGoogle Scholar
  217. J. W. S. Rayleigh. On maintained vibrations. Philos Mag xv, pages 229–235, 1883.Google Scholar
  218. Lord Rayleigh. On the instantaneous propagation of disturbance in a dispersive medium, exemplified by waves on water deep and shallow. Phil. Mag., 18:1–6, 1909.Google Scholar
  219. E. L. Reiss. On multivariable asymptotic expansions. SIAM Rev, 13:189–196, 1971.MathSciNetMATHCrossRefGoogle Scholar
  220. D. Richards. Advanced mathematical methods with Maple. Cambridge University Press, Cambridge, 2002.MATHGoogle Scholar
  221. W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, 3rd edition, 1964.MATHGoogle Scholar
  222. E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. Springer, New York, 1980.Google Scholar
  223. J. A. Sanders. The driven Josephson equation: an exercise in asymptotics. In F. Verhulst, editor, Asymptotic Analysis II - Surveys and New Trends, pages 288–318, New York, 1983. Springer.Google Scholar
  224. A. S. Sangani. An application of an homogenization method to a model of diffusion in glassy polymers. J Polymer Sci, 24:563–575, 1986.Google Scholar
  225. F. Santosa and W. W. Symes. A dispersive effective medium for wave propagation in periodic composites. SIAM J Appl Math, 51:984–1005, 1991.MathSciNetMATHCrossRefGoogle Scholar
  226. A. E. Scheidegger. The Physics of Flow Through Porous Media. University of Toronto Press, Toronto, 3d edition, 1974.Google Scholar
  227. A. Schlissel. The development of asymptotic solutions of linear ordinary differential equations, 1817–1920. Arch History Exact Sci, 16:307–378, 1977a.MathSciNetMATHGoogle Scholar
  228. A. Schlissel. The initial development of the WKB solutions of linear second order ordinary differential equations and their use in the connection problem. Historia Math, 4: 183–204, 1977b.MathSciNetMATHCrossRefGoogle Scholar
  229. F. Schlogl. Chemical reaction models for non-equilibrium phase transitions. Z Phys, 253: 147, 1972.CrossRefGoogle Scholar
  230. J. Schnakenberg. Simple chemical reaction systems with limit cycle behaviour. J theor Biol, 3281:389–400, 1979.MathSciNetCrossRefGoogle Scholar
  231. D. Secrest, K. Cashion, and J. O. Hirschfelder. Power-series solutions for energy eigenvalues. J Chem Phys, 37:830–835, 1962.CrossRefGoogle Scholar
  232. E. E. Sel’kov. Self-oscillations in glycolysis. Eur J Biochem, 4(1):79–86, 1968.Google Scholar
  233. J. A. Sethian and A. Vladimirsky. Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proc. Natl. Acad. Sci., 97: 5699–5703, 2000.MathSciNetMATHCrossRefGoogle Scholar
  234. R. Seydel. Practical Bifurcation and Stability Analysis. Springer, Berlin, 3rd edition, 2010.MATHCrossRefGoogle Scholar
  235. J. J. Shepherd. On the asymptotic solution of the Reynolds equation. SIAM J Appl Math, 34:774–791, 1978.MathSciNetMATHCrossRefGoogle Scholar
  236. J. J. Shepherd and L. Stojkov. The logistic population model with slowly varying carrying capacity. In A. Stacey, B. Blyth, J. Shepherd, and A. J. Roberts, editors, Proceedings of the 7th Biennial Engineering Mathematics and Applications Conference, EMAC-2005, volume 47 of ANZIAM J., pages C492–C506, 2007.Google Scholar
  237. S.-D. Shih and R. B. Kellogg. Asymptotic analysis of a singular perturbation problem. SIAM J Math Anal, 18:1467–1511, 1987.MathSciNetMATHCrossRefGoogle Scholar
  238. W. L. Siegmann, G. A. Kriegsmann, and D. Lee. A wide-angle three-dimensional parabolic wave equation. J Acoust Soc Am, 78:659–664, 1985.MathSciNetCrossRefGoogle Scholar
  239. A. Singer, D. Gillespie, J. Norbury, and R. S. Eisenberg. Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: Applications to ion channels. Eur J Appl Math, 19(5):541–569, 2008.MathSciNetMATHCrossRefGoogle Scholar
  240. L. J. Slater. Confluent Hypergeometric Functions. Cambridge University Press, London, 1960.MATHGoogle Scholar
  241. D. R. Smith. Singular-Perturbation Theory: An Introduction with Applications. Cambridge University Press, Cambridge, 1985.MATHGoogle Scholar
  242. C. R. Steele. Application of the WKB method in solid mechanics. In S. Nemat-Nasser, editor, Mechanics Today, volume 3, pages 243–295, New York, 1976. Pergamon.Google Scholar
  243. S. Stenholm. Quantum motion in a Paul trap. J Modern Opt, 39:279–290, 1992.CrossRefGoogle Scholar
  244. D. C. Stickler, J. Tavantzis, and E. Ammicht. Calculation of the second term in the geometrical acoustics expansion. J Acoust Soc Am, 75:1071–1076, 1984.MathSciNetMATHCrossRefGoogle Scholar
  245. J. J. Stoker. Nonlinear Vibrations in Mechanical and Electrical Systems. Wiley-Interscience, New York, 1950.MATHGoogle Scholar
  246. G. G. Stokes. On some cases of fluid motion. Trans Cambridge Philos Soc, 8:105–165, 1843.Google Scholar
  247. S. H. Strogatz. Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering. Westview, New York, 2001.Google Scholar
  248. R. A. Struble and T. C. Harris. Motion of a relativistic damped oscillator. J Math Phys, 5:138–141, 1964.MathSciNetMATHCrossRefGoogle Scholar
  249. J. T. Stuart. Stability problems in fluids. In W. H. Reid, editor, Mathematical Problems in the Geophysical Sciences, pages 139–155, Providence, RI, 1971. American Mathematical Society.Google Scholar
  250. F. D. Tappert. The parabolic approximation method. In J. B. Keller and J. S. Papadakis, editors, Wave Propagation and Underwater Acoustics, pages 224–287, New York, 1977. Springer.Google Scholar
  251. L. Tartar. The General Theory of Homogenization: A Personalized Introduction. Lecture Notes of the Unione Matematica Italiana. Springer, 2009.MATHGoogle Scholar
  252. H. C. Torng. Second-order non-linear difference equations containing small parameters. J Franklin Inst, 269:97–104, 1960.MathSciNetMATHCrossRefGoogle Scholar
  253. A. N. Tychonov and A. A. Samarskii. Partial Differential Equations of Mathematical Physics. Holden-Day, 1970.Google Scholar
  254. J. Um and C. Thurber. A fast algorithm for two-point seismic ray tracing. Bull Seism Soc Am, 77:972–986, 1987.Google Scholar
  255. M. Ungarish. Hydrodynamics of Suspensions: Fundamentals of Centrifugal and Gravity Separation. Springer, Berlin, 1993.CrossRefGoogle Scholar
  256. O. Vallée and M. Soares. Airy Functions and Applications to Physics. Imperial College Press, London, 2nd edition, 2010.MATHCrossRefGoogle Scholar
  257. B. van der Pol. On relaxation oscillations. Philos Mag, 2:978–992, 1926.Google Scholar
  258. M. Van Dyke. Perturbation Methods in Fluid Mechanics. Parabolic Press, Stanford, CA, 1975.MATHGoogle Scholar
  259. A. van Harten. On an elliptic singular perturbation problem. In W. N. Everitt and B. D. Sleeman, editors, Ordinary and Partial Differential Equations, pages 485–495, Berlin, 1976. Springer.Google Scholar
  260. W. van Horssen and M. ter Brake. On the multiple scales perturbation method for difference equations. Nonlinear Dyn, 55:401–418, 2009.MATHCrossRefGoogle Scholar
  261. N. Voglis. Waves derived from galactic orbits. In Galaxies and Chaos, volume 626 of Lecture Notes in Physics, pages 56–74. Springer, Berlin Heidelberg, 2003.Google Scholar
  262. M. Wang and D. R. Kassoy. Dynamic response of an inert gas to slow piston acceleration. J Acoust Soc Am, 87:1466–1471, 1990.CrossRefGoogle Scholar
  263. M. Wazewska-Czyzewska and A. Lasota. Mathematical problems of the dynamics of a system of red blood cells. Math Stos, Seria III, 6:23–40, 1976.Google Scholar
  264. A. G. Webster. Acoustical impedance, and the theory of horns and the phonograph. Proc Natl Acad Sci, 5:275–282, 1919.CrossRefGoogle Scholar
  265. P. J. Westervelt. Parametric acoustic array. J Acoust Soc Am, 35:535–537, 1963.CrossRefGoogle Scholar
  266. G. B. Whitham. Linear and Nonlinear Waves. Wiley, New York, 1974.MATHGoogle Scholar
  267. J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood Cliffs, NJ, 1964.Google Scholar
  268. B. Willner and L. A. Rubenfeld. Uniform asymptotic solutions for a linear ordinary differential equation with one m-th order turning point: analytic theory. Comm Pure Appl Math, XXIX:343–367, 1976.Google Scholar
  269. P. Wilmott. A note on the WKB method for difference equations. IMA J Appl Math, 34: 295–302, 1985.MathSciNetMATHCrossRefGoogle Scholar
  270. S. Woinowsky-Krieger. The effect of an axial force on the vibration of hinged bars. J. Appl. Mech., 17:35–36, March 1950.MathSciNetMATHGoogle Scholar
  271. D. J. Wollkind. Singular perturbation techniques: a comparison of the method of matched asymptotic expansions with that of multiple scales. SIAM Rev, 19:502–516, 1977.MathSciNetMATHCrossRefGoogle Scholar
  272. H. Zhao. A fast sweeping method for eikonal equations. Math. Comp., 74:603–627, 2005.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mark H. Holmes
    • 1
  1. 1.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations