Emergent Dynamical Features in Behaviour-Incidence Models of Vaccinating Decisions

  • Samit Bhattacharyya
  • Chris T. Bauch


Vaccination is a cornerstone of infectious disease prevention. However, individual vaccinating behaviour does not always result in population-level vaccine coverage patterns that are optimal for protecting public health. For example, vaccine coverage may fall below the elimination threshold due to nonvaccinators who “free-ride” on the herd immunity provided by vaccinators. Routine vaccination programs for many paediatric infectious diseases now have an almost worldwide coverage, but vaccine scares fuelled by such behaviours threaten eradication goals. This free-riding behaviour can be seen as a manifestation of policy resistance, where humans respond to an intervention in such a way that tends to undermine the intervention. However, policy resistance is only one such example of the types of dynamics that emerge from the interaction between vaccinating behaviour and disease incidence or prevalence. Here we explore four types of emergent dynamics of behaviour-incidence systems: policy resistance, policy reinforcement, outcome inelasticity, and outcome variability. We discuss examples of each of these dynamics in the behaviour-incidence modelling literature, and suggest potential implications for vaccination policy.


Vaccination Coverage Policy Reinforcement Vaccine Coverage Herd Immunity Paediatric Infectious Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



C.T.B. is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council.


  1. 1.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford Science Publications, Oxford (1991)Google Scholar
  2. 2.
    Auld, C.: J. Health Econ. 22, 361 (2003)CrossRefGoogle Scholar
  3. 3.
    Ball, L., Ball, R., Gellin, B.: Developing safe vaccines. In: Levine, M., Kaper, J., Rappuoli, R., Liu, M., Good, M. (eds.) New Generation Vaccines. Dekker, New York (2004)Google Scholar
  4. 4.
    Basu, S., Chapman, G.B., Galvani, A.P.: Proc Natl Acad Sci. USA 105, 19018 (2008)CrossRefGoogle Scholar
  5. 5.
    Bauch, C.T, Earn, D.J.D.: Proc Natl Acad Sci. USA 101, 13391 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bauch, C.T., Galvani, A.P., Earn, D.J.D.: Proc. Natl Acad. Sci. USA 100, 10564 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bauch, C.T.: Proc. R. Soc. B. 272, 1669 (2005)CrossRefGoogle Scholar
  8. 8.
    Bauch, C.T., Bhattacharyya, S., Ball, R.F.: PLoS ONE 5(9), e12594 (2010)CrossRefGoogle Scholar
  9. 9.
    Bauch, C.T., Bhattacharyya, S.: PLoS Comp Biol. 8(4), e1002452 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bhattacharyya, S., Bauch, C.T.: Hum. Vaccine and Immunotherapeutics 8, 842 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bhattacharyya, S., Bauch, C.T.: J. Theor. Biol. 267, 276 (2010)CrossRefGoogle Scholar
  12. 12.
    Bhattacharyya, S., Bauch, C.T.: Vaccine 29, 55195 (2011)Google Scholar
  13. 13.
    Bonanni, P.: Vaccine 17, 120 (1999)CrossRefGoogle Scholar
  14. 14.
    Brito, D.L., Sheshinski, E., Intriligator, M.D.: J. Public. Econ. 45, 69 (1991)CrossRefGoogle Scholar
  15. 15.
    Coelho, F.C., Codeço, C.T.: PLoS Comput Biol 5, e1000425 (2009)CrossRefGoogle Scholar
  16. 16.
    Colgrave, J.: State of Immunity: The Politics of Vaccination in Twentieth-Century America. University of California Press, Berkeley (2006)Google Scholar
  17. 17.
    Diel, R., Rappenhoener, B., Schneider, S.: Eur. J. Health Econ. 2(3), 963 (2000)Google Scholar
  18. 18.
    d’Onofrio, A., Manfredi, P., Salinelli, E.: Math. Med. Biol. 25, 337 (2008)Google Scholar
  19. 19.
    d’Onofrio, A., Manfredi, P., Salinelli, E.: Theor. Popul. Biol. 71, 301 (2007)Google Scholar
  20. 20.
    d’Onofrio, A., Manfredi, P., Poletti, P.: J. Theor. Biol. 273(1), 63 (2011)Google Scholar
  21. 21.
    Fenner, F.D.A., Henderon, D.A., Arita, I., Jezek, Z., LAdnyin, I.D.: Smallpox and Its Eradication. World Health Organization Press, Geneva (1988)Google Scholar
  22. 22.
    Fine, P.E., Clarkson, J.A.: Am. J. Epidemiol. 124, 1012 (1986)Google Scholar
  23. 23.
    Fiore, A.E., Shay, D.K., Broder, K., Iskander, J.K., Uyeki, T.M., Mootrey, G., Bresee, J.S.: Cox NJ MMWR Recomm Rep. 58(RR-8), 1 (2009)Google Scholar
  24. 24.
    Funk, S., Gilad, E., Jansen, V.A.A.: J. Theor. Biol. 264, 501 (2010)CrossRefGoogle Scholar
  25. 25.
    Funk, S., Salathe, M., Jansen, V.A.A.: J. R. Soc. Interface 7, 1247 (2010)CrossRefGoogle Scholar
  26. 26.
    Fu, F., Rosenbloom, D.I., Wang, L., Nowak, M.A.: Proc. R. Soc. B 278, 42 (2011)CrossRefGoogle Scholar
  27. 27.
    Galvani, A.P., Reluga, T.C., Chapman, G.B.: Proc. Natl. Acad. Sci. USA 104, 5692 (2007)CrossRefGoogle Scholar
  28. 28.
    Gharbieh, E.A., Fahmy, S., Rasool, B.A., Khan, S.: Int. J. Med. Sci. 7(5), 319 (2010)CrossRefGoogle Scholar
  29. 29.
    Greenhalgh, D.: Commun. Stat. Stoch. Models 2, 339 (1986)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Hardin, G.: Science 162, 1243 (1968)CrossRefGoogle Scholar
  31. 31.
    Jansen, V.A., Stollenwerk, N., Jensen, H.J., Ramsay, M.E., Edmunds, W.J, Rhodes, C.J.: Science 301, 804 (2003)CrossRefGoogle Scholar
  32. 32.
    Keeling, M.J., Woolhouse, M.E.J., May, R.M., Davies, G., Grenfell, B.T.: Nature 421, 136 (2003)CrossRefGoogle Scholar
  33. 33.
    Lam, P.P., Chambers, L.W., MacDougall, D.M., McCarthy, A.E.: CAMJ 182(12), E542 (2010)CrossRefGoogle Scholar
  34. 34.
    Liu, J., Kochin, B.F., Tekle, Y.I., Galvani, A.P.: J. R. Soc. Interface 9(66), 68 (2012)CrossRefGoogle Scholar
  35. 35.
    Madjid, M., Alfred, A., Sahai, A., Conyers, J.L., Casscells, S.W.: Tex Heart Inst. J. 36(6), 546 (2009)Google Scholar
  36. 36.
    Morsky, B., Bauch, C.T.: Outcome inelasticity and outcome variability in behavior-incidence models: an example from an SIR infection on a dynamic network. Submitted in Computational and Mathematical methods in Medicine (2012)Google Scholar
  37. 37.
    Muller, J., Schonfisch, B., Kirkilionis, M.: J. Math. Biol. 41, 143 (2000)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Philipson, T.: J. Hum. Resour. 31, 611 (1996)CrossRefGoogle Scholar
  39. 39.
    Reluga, T.C., Bauch, C.T., Galvani, A.P.: Math. Biosci. 204, 185 (2006)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Sterman, J.D.: Am. J. Pub. Health 96, 505 (2006)CrossRefGoogle Scholar
  41. 41.
    Toma, B., Moutou, F., Dufourc, B., Durand, B.: Comp. Immunol. Microbiol. Infect. Dis. 25, 365 (2002)CrossRefGoogle Scholar
  42. 42.
    Vardavas, R., Breban, R., Blower, S.: BMC Research Notes 3, 92 (2010)CrossRefGoogle Scholar
  43. 43.
    Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)MATHGoogle Scholar
  44. 44.
    Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1995)MATHGoogle Scholar
  45. 45.
    Wells, C.R., Tchuenche, J.M., Meyers, L., Galvani, A.P., Bauch, C.T.: Bull. Math. Biol. 73, 2748 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Wilkinson, E.: Universal flu vaccine tests start (2008)

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departments of Mathematics and BiologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Mathematics and StatisticsUniversity of GuelphGuelphCanada

Personalised recommendations