Skip to main content

Targeting CD19 with SAR3419, an anti-CD19-Maytansinoid Conjugate for the Treatment of B Cell Malignancies

  • Chapter
  • First Online:
Antibody-Drug Conjugates and Immunotoxins

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

CD19 is a 95 kDa type 1 transmembrane glycoprotein whose expression is highly restricted to cells of B-lineage. CD19 expression is maintained in B-lineage cells that have undergone malignant transformation. Several approaches to exploit anti-CD19 monoclonal antibodies to treat B cell malignancies are being evaluated, including “naked” antibodies, bispecific antibodies, and immunoconjugates. SAR3419 is an ADC that is composed of a humanized monoclonal IgG1 anti-CD19 antibody (huB4) attached to a highly potent cytotoxic agent, the maytansinoid DM4, a tubulin agent, through reaction with a disulfide-containing linker. SAR3419 displays potent in vitro cytotoxicity towards CD19-positive lymphoma cell lines and shows good efficacy in several different in vivo models of lymphoma, including Burkitt’s lymphoma and diffuse large B cell lymphoma implanted into SCID mice. Initial clinical evaluation of SAR3419 was done in two phase I dose escalation studies exploring alternative schedules of administration, every 3 weeks and weekly, in patients with refractory/relapsed B cell non-Hodgkin’s lymphoma expressing CD19. Preliminary clinical activity is encouraging for its future development, with objective responses seen in both indolent and aggressive lymphomas in both phase I studies. There was a low incidence of clinically significant hematological toxicity, and the reversible ocular toxicity that defined the DLT on the 3-week schedule appeared to be manageable on weekly dosing regimens. The potential of SAR3419 is now being evaluated in a multi-trial phase II program which started in the second half of 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tedder TF, Issacs CM (1989) Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes. A new member of the immunoglobulin superfamily. J Immunol 143:712–717

    PubMed  CAS  Google Scholar 

  2. Uckun FM (1990) Regulation of human B-cell ontogeny. Blood 76:1908–1923

    PubMed  CAS  Google Scholar 

  3. Scheuermann RH, Racila E (1995) CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 18:385–397

    Article  PubMed  CAS  Google Scholar 

  4. Sato S, Steeber DA, Jansen PJ, Tedder TF (1997) CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol 158:4662–4669

    PubMed  CAS  Google Scholar 

  5. Sato S, Steeber DA, Tedder TF (1995) The CD19 signal transduction molecule is a response regulator of B-lymphocyte differentiation. Proc Natl Acad Sci USA 92:11558–11562

    Article  PubMed  CAS  Google Scholar 

  6. Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF (1992) The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 149:2841–2850

    PubMed  CAS  Google Scholar 

  7. Pesando JM, Bouchard LS, McMaster BE (1989) CD19 is functionally and physically associated with surface immunoglobulin. J Exp Med 170:2159–2164

    Article  PubMed  CAS  Google Scholar 

  8. Carter RH, Tuveson DA, Park DJ, Rhee SG, Fearon DT (1991) The CD19 complex of B lymphocytes. Activation of phospholipase C by a protein tyrosine kinase-dependent pathway that can be enhanced by the membrane IgM complex. J Immunol 147:3663–3671

    PubMed  CAS  Google Scholar 

  9. Carter RH, Fearon DT (1992) CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256:105–107

    Article  PubMed  CAS  Google Scholar 

  10. van Zelm MC, Reisli I, van der Burg M, Castaño D, van Noesel CJ, van Tol MJ et al (2006) An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med 354:1901–1912

    Article  PubMed  Google Scholar 

  11. Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF, Nadler LM (1984) Expression of human B-cell associated antigens on leukemias and lymphomas: a model of human B-cell differentiation. Blood 63:1424–1433

    PubMed  CAS  Google Scholar 

  12. Yazawa N, Hamaguchi Y, Poe JC, Tedder TF (2005) Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci USA 102:15178–15183

    Article  PubMed  CAS  Google Scholar 

  13. Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, Damschroder M et al (2010) B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 335:213–222

    Article  PubMed  CAS  Google Scholar 

  14. Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY et al (2008) Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res 68:8049–8057

    Article  PubMed  CAS  Google Scholar 

  15. Awan FT, Lapalombella R, Trotta R, Butchar JP, Yu B, Benson DM Jr et al (2010) CD19 targeting of chronic lymphocytic leukemia with a novel Fc-domain-engineered monoclonal antibody. Blood 115:1204–1213

    Article  PubMed  CAS  Google Scholar 

  16. Nagorsen D, Baeuerle PA (2011) Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res 317:1255–1260

    Article  PubMed  CAS  Google Scholar 

  17. Kipriyanov SM, Cochlovius B, Schäfer HJ, Moldenhauer G, Bähre A, Le Gall F et al (2002) Synergistic antitumor effect of bispecific CD19 x CD3 and CD19 x CD16 diabodies in a preclinical model of non-Hodgkin’s lymphoma. J Immunol 169:137–144

    PubMed  CAS  Google Scholar 

  18. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S et al (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321:974–977

    Article  PubMed  CAS  Google Scholar 

  19. Lambert JM, Goldmacher VS, Collinson AR, Nadler LM, Blättler WA (1991) An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res 51:6236–6242

    PubMed  CAS  Google Scholar 

  20. Grossbard ML, Freedman AS, Ritz J, Coral F, Goldmacher VS, Eliseo L et al (1992) Serotherapy of B-cell neoplasms with anti-B4-blocked ricin: a phase I trial of daily bolus infusion. Blood 79:576–585

    PubMed  CAS  Google Scholar 

  21. Grossbard ML, Press OW, Appelbaum FR, Bernstein ID, Nadler LM (1992) Monoclonal antibody-based therapies of leukemia and lymphoma. Blood 80:863–878

    PubMed  CAS  Google Scholar 

  22. Uckun FM, Manivel C, Arthur D, Chelstrom LM, Finnegan D, Tuel-Ahlgren L et al (1992) In vivo efficacy of B43 (anti-CD19)-pokeweed antiviral protein immunotoxin against human pre-B cell acute lymphoblastic leukemia in mice with severe combined immunodeficiency. Blood 79:2201–2214

    PubMed  CAS  Google Scholar 

  23. Ghetie MA, May RD, Till M, Uhr JW, Ghetie V, Knowles PP et al (1988) Evaluation of ricin A chain-containing immunotoxins directed against CD19 and CD22 antigens on normal and malignant human B-cells as potential reagents for in vivo therapy. Cancer Res 48:2610–2617

    PubMed  CAS  Google Scholar 

  24. Messmann RA, Vitetta ES, Headlee D, Senderowicz AM, Figg WD, Schindler J et al (2000) A phase I study of combination therapy with immunotoxins IgG-HD37-defucosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin Cancer Res 6:1302–1313

    PubMed  CAS  Google Scholar 

  25. Goldmacher VS, Scott CF, Lambert JM, McIntyre GD, Blättler WA, Collinson AR et al (1989) Cytotoxicity of gelonin and its conjugates with antibodies is determined by the extent of their endocytosis. J Cell Physiol 141:222–234

    Article  PubMed  CAS  Google Scholar 

  26. Flavell DJ, Flavell SU, Boehm DA, Emery L, Noss A, Ling NR et al (1995) Preclinical studies with the anti-CD19-saporin immunotoxin BU12-SAPORIN for the treatment of human-B-cell tumours. Br J Cancer 72(6):1373–1379

    Article  PubMed  CAS  Google Scholar 

  27. Grossbard ML, Lambert JM, Goldmacher VS, Spector NL, Kinsella J, Eliseo L et al (1993) Anti-B4-blocked ricin: a phase I trial of 7-day continuous infusion in patients with B-cell neoplasms. J Clin Oncol 11:726–737

    PubMed  CAS  Google Scholar 

  28. Grossbard ML, Gribben JG, Freedman AS, Lambert JM, Kinsella J, Rabinowe SN et al (1993) Adjuvant immunotoxin therapy with anti-B4-blocked ricin after autologous bone marrow transplantation for patients with B-cell non-Hodgkin’s lymphoma. Blood 81:2263–2271

    PubMed  CAS  Google Scholar 

  29. Grossbard ML, Multani PS, Freedman AS, O’Day S, Gribben JG, Rhuda C et al (1999) A phase II study of adjuvant therapy with anti-B4-blocked ricin after autologous bone marrow ­transplantation for patients with relapsed B-cell non-Hodgkin’s lymphoma. Clin Cancer Res 5:2392–2398

    PubMed  CAS  Google Scholar 

  30. Longo DL, Duffey PL, Gribben JG, Jaffe ES, Curti BD, Gause BL et al (2000) Combination chemotherapy followed by an immunotoxin (anti-B4-blocked ricin) in patients with indolent lymphoma: results of a phase II study. Cancer J 6:146–150

    PubMed  CAS  Google Scholar 

  31. Scadden DT, Schenkein DP, Bernstein Z, Luskey B, Doweiko J, Tulpule A, Levine AM (1998) Immunotoxin combined with chemotherapy for patients with AIDS-related non-Hodgkin’s lymphoma. Cancer 83:2580–2587

    Article  PubMed  CAS  Google Scholar 

  32. Dinndorf P, Krailo M, Liu-Mares W, Frierdich S, Sondel P, Reaman G (2001) Phase I trial of anti-B4-blocked ricin in pediatric patients with leukemia and lymphoma. J Immunother 24:511–516

    Article  PubMed  CAS  Google Scholar 

  33. Szatrowski TP, Dodge RK, Reynolds C, Westbrook CA, Frankel SR, Sklar J et al (2003) Lineage specific treatment of adult patients with acute lymphoblastic leukemia in first remission with anti-B4-blocked ricin or high-dose cytarabine: Cancer and Leukemia Group B Study 9311. Cancer 97:1471–1480

    Article  PubMed  CAS  Google Scholar 

  34. Tsimberidou AM, Giles FJ, Kantarjian HM, Keating MJ, O’Brien SM (2003) Anti-B4-blocked ricin post chemotherapy in patients with chronic lymphocytic leukemia—long-term follow-up of a monoclonal antibody-based approach to residual disease. Leuk Lymphoma 44:1719–1725

    Article  PubMed  CAS  Google Scholar 

  35. Furman RR, Grossbard ML, Johnson JL, Pecora AL, Cassileth PA, Jung SH et al (2011) A phase III study of anti-B4-blocked ricin as adjuvant therapy post-autologous bone marrow transplant: CALGB 9254. Leuk Lymphoma 52:587–596

    Article  PubMed  CAS  Google Scholar 

  36. Roy DC, Perreault C, Bélanger R, Gyger M, Le Houillier C, Blättler WA et al (1995) Elimination of B-lineage leukemia and lymphoma cells from bone marrow grafts using anti-B4-blocked-ricin immunotoxin. J Clin Immunol 15:51–57

    Article  PubMed  CAS  Google Scholar 

  37. Rowland AJ, Pietersz GA, McKenzie IF (1993) Preclinical investigation of the antitumour effects of anti-CD19-idarubicin immunoconjugates. Cancer Immunol Immunother 37:195–202

    Article  PubMed  CAS  Google Scholar 

  38. Uckun FM, Evans WE, Forsyth CJ, Waddick KG, Ahlgren LT, Chelstrom LM et al (1995) Biotherapy of B-cell precursor leukemia by targeting genistein to CD19-associated tyrosine kinases. Science 267:886–891

    Article  PubMed  CAS  Google Scholar 

  39. Uckun FM, Messinger Y, Chen CL, O’Neill K, Myers DE, Goldman F et al (1999) Treatment of therapy-refractory B-lineage acute lymphoblastic leukemia with an apoptosis-inducing CD19-directed tyrosine kinase inhibitor. Clin Cancer Res 5:3906–3913

    PubMed  CAS  Google Scholar 

  40. Chari RVJ (1998) Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv Drug Delivery Rev 31:89–105

    Article  CAS  Google Scholar 

  41. Lambert JM (2005) Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol 5:543–549

    Article  PubMed  CAS  Google Scholar 

  42. Lambert JM (2010) Antibody-maytansinoid conjugates: a new strategy for the treatment of cancer. Drugs Fut 35:471–480

    CAS  Google Scholar 

  43. Widdison WC, Wilhelm SD, Cavanagh EE, Whiteman KR, Leece BA, Kovtun Y et al (2006) Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem 49:4392–4408

    Article  PubMed  CAS  Google Scholar 

  44. Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM (2011) SAR3419: an anti-CD19-maytansinoid immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res 17:6448–6458

    Article  PubMed  CAS  Google Scholar 

  45. Nadler LM, Anderson KC, Marti G, Bates M, Park E, Daley JF, Schlossman SF (1983) B4, a human B lymphocyte-associated antigen expressed on normal, mitogen activated, and malignant B lymphocytes. J Immunol 131:244–250

    PubMed  CAS  Google Scholar 

  46. Vater CA, Reid K, Bartle LM, Goldmacher VS (1995) Characterization of antibody binding to cell surface antigens using a plasma membrane-bound plate assay. Anal Biochem 224:39–50

    Article  PubMed  CAS  Google Scholar 

  47. Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM et al (1994) Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Natl Acad Sci USA 91:969–973

    Article  PubMed  CAS  Google Scholar 

  48. Roguska MA, Pedersen JT, Henry AH, Searle SMJ, Roja CM, Avery B et al (1996) A comparison of two murine monoclonal antibodies humanized by CDR-grafting and variable domain resurfacing. Protein Eng 9:895–904, Erratum: Protein Eng. 1997; 10:181

    Article  PubMed  CAS  Google Scholar 

  49. Kupchan SM, Komoda Y, Court WA, Thomas GT, Smith RM, Karim A et al (1972) Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc 94:1354–1356

    Article  CAS  Google Scholar 

  50. Remillard S, Rebhun LI, Howie GA, Kupchan SM (1975) Antimitotic activity of the potent tumor inhibitor maytansine. Science 189:1002–1005

    Article  Google Scholar 

  51. Issell BF, Crooke ST (1978) Maytansine. Cancer Treat Rev 5:199–207

    Article  PubMed  CAS  Google Scholar 

  52. Kellogg BA, Garrett L, Kovtun Y, Lai KC, Leece B, Miller M et al (2011) Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug Chem 22:717–727

    Article  PubMed  CAS  Google Scholar 

  53. Lutz RJ, Zuany-Amorim C, Vrignaud P, Mayo MF, Guerif S, Xie H et al (2006) Preclinical evaluation of SAR3419 (huB4-DM4), an anti-CD19-maytansinoid immunoconjugate, for the treatment of B-cell lymphoma. Proc Am Assoc Cancer Res 47 (Abstract 3731)

    Google Scholar 

  54. Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K et al (2006) Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 66:4426–4433

    Article  PubMed  CAS  Google Scholar 

  55. Erickson HK, Provenzano CA, Mayo MF, Widdison WC, Audette C, Leece B et al (2009) Target-cell processing of the anti-CD19 antibody maytansinoid conjugate SAR3419 in preclinical models. Proc Am Assoc Cancer Res (Abstr 5473)

    Google Scholar 

  56. Lopus M, Oroudjev E, Wilson L, Wilhelm S, Widdison W, Chari R et al (2010) Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther 9:2689–2699

    Article  PubMed  CAS  Google Scholar 

  57. Erickson HK, Widdison WC, Mayo MF, Whiteman K, Audette C, Wilhelm SD et al (2010) Tumor delivery and in vivo processing of disulfide-linked and thioether linked antibody-maytansinoid conjugates. Bioconjug Chem 21:84–92

    Article  PubMed  CAS  Google Scholar 

  58. Al Katib AM, Aboukameel A, Mohammad R, Bissery M-C, Zuany-Amorim C (2009) Superior antitumor activity of SAR3419 to rituximab in xenograft models for non-Hodgkin’s lymphoma. Clin Cancer Res 15:4038–4045

    Article  PubMed  CAS  Google Scholar 

  59. Younes A, Gordon L, Kim S, Romaguera J, Copeland AR, de Castro Farial S et al (2009) Phase I multi-dose escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous (IV) infusion every 3 weeks to patients with relapsed/refractory B-Cell non-Hodgkin’s lymphoma (NHL). ASH annual meeting abstracts. Blood 114 (Abstr 585)

    Google Scholar 

  60. Younes A, Kim S, Romaguera J, Copeland A, de Castro Farial S, Kwak LW et al (2012) Phase I multi-dose escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma. J Clin Oncol 30(22):2776–2782

    Article  PubMed  CAS  Google Scholar 

  61. Coiffier B, Ribrag V, Dupuis J, Tilly H, Haioun C, Morschhauseret F et al (2011) Phase I/II study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered weekly to patients with relapsed/refractory B-cell non-Hodgkin’s lymphoma (NHL). J Clin Oncol 29(Suppl):Abstr 8017

    Google Scholar 

  62. Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E et al (2002) Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8:1038–1044

    PubMed  CAS  Google Scholar 

  63. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P et al (2005) Phase III of nanoparticle albumin-bound paclitaxel compared with polyethylated castor-oil-based paclitaxel in women with metastatic breast cancer. J Clin Oncol 23:7794–7803

    Article  PubMed  CAS  Google Scholar 

  64. Janeway CA, Travers P, Walport M, Shlomchik M (2004) Immunobiology, the Immune System in Health and Disease. 6th Edition, Churchill Livingstone

    Google Scholar 

  65. Lazar AC, Wang L, Blättler WA, Amphlett GA, Lambert LM, Zhang W (2005) Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun Mass Spectrom 19:1806–1814

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Lambert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambert, J.M., Blanc, V., Le Bail, N., Bousseau, A. (2013). Targeting CD19 with SAR3419, an anti-CD19-Maytansinoid Conjugate for the Treatment of B Cell Malignancies. In: Phillips, G. (eds) Antibody-Drug Conjugates and Immunotoxins. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5456-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5456-4_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5455-7

  • Online ISBN: 978-1-4614-5456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics