Linker Technology and Impact of Linker Design on ADC Properties

  • Victor S. Goldmacher
  • Rajeeva Singh
  • Thomas Chittenden
  • Yelena Kovtun
Part of the Cancer Drug Discovery and Development book series (CDD&D)


The function of a linker in an antibody–drug conjugate is to covalently connect its effector moiety, the cytotoxic drug, with its targeting moiety, the antibody. In this chapter, we review various linkers, cleavable and non-cleavable, that have been reported, main approaches that have been used to attach the linkers to the antibodies, and the impact of various linkers on the properties of the resulting ADCs, such as their cytotoxic and antitumor activities, stabilities in circulation and tissues, and the extent of killing of bystander cells and of multidrug-resistant cells. Finally, we review clinical experience with ADCs made with different linkers.


Maximum Tolerate Dose Bystander Effect Gemtuzumab Ozogamicin Antibody Molecule Linker Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492PubMedGoogle Scholar
  2. 2.
    Mills BJ, Lang CA (1996) Differential distribution of free and bound glutathione and cyst(e)ine in human blood. Biochem Pharmacol 52:401–406PubMedCrossRefGoogle Scholar
  3. 3.
    Turell L, Carballal S, Botti H, Radi R, Alvarez B (2009) Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment. Braz J Med Biol Res 42:305–311PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson JM, Wu D, Motiu-DeGrood R, Hupe DJ (1980) A spectrophotometric method for studying the rates of reaction of disulfides with protein thiol groups applied to bovine serum albumin. J Am Chem Soc 102:359–363CrossRefGoogle Scholar
  5. 5.
    Appenzeller-Herzog C, Ellgaard L (2008) The human PDI family: versatility packed into a single fold. Biochim Biophys Acta 1783:535–548PubMedCrossRefGoogle Scholar
  6. 6.
    Pillay CS, Elliott E, Dennison C (2002) Endolysosomal proteolysis and its regulation. Biochem J 363:417–429PubMedCrossRefGoogle Scholar
  7. 7.
    Ciechanover A (2006) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Hematol Am Soc Hematol Educ Prog 1–12:505–506Google Scholar
  8. 8.
    Singh R, Erickson HK (2009) Antibody-cytotoxic agent conjugates: preparation and characterization. Methods Mol Biol 525:445–467, xivPubMedCrossRefGoogle Scholar
  9. 9.
    Junutula JR, Flagella KM, Graham RA, Parsons KL, Ha E, Raab H, Bhakta S, Nguyen T, Dugger DL, Li G, Mai E, Lewis Phillips GD, Hiraragi H, Fuji RN, Tibbitts J, Vandlen R, Spencer SD, Scheller RH, Polakis P, Sliwkowski MX (2010) Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res 16:4769–4778PubMedCrossRefGoogle Scholar
  10. 10.
    Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blattler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290PubMedCrossRefGoogle Scholar
  11. 11.
    Oflazoglu E, Stone IJ, Gordon K, Wood CG, Repasky EA, Grewal IS, Law CL, Gerber HP (2008) Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin Cancer Res 14:6171–6180PubMedCrossRefGoogle Scholar
  12. 12.
    Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, Lutz RJ, Goldmacher VS, Blattler WA (2006) Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 66:4426–4433PubMedCrossRefGoogle Scholar
  13. 13.
    Kovtun YV, Audette CA, Mayo MF, Jones GE, Doherty H, Maloney EK, Erickson HK, Sun X, Wilhelm S, Ab O, Lai KC, Widdison WC, Kellogg B, Johnson H, Pinkas J, Lutz RJ, Singh R, Goldmacher VS, Chari RV (2010) Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res 70:2528–2537PubMedCrossRefGoogle Scholar
  14. 14.
    Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL, Oflazoglu E, Toki BE, Sanderson RJ, Zabinski RF, Wahl AF, Senter PD (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem 17:114–124PubMedCrossRefGoogle Scholar
  15. 15.
    Kellogg BA, Garrett L, Kovtun Y, Lai KC, Leece B, Miller M, Payne G, Steeves R, Whiteman KR, Widdison W, Xie H, Singh R, Chari RV, Lambert JM, Lutz RJ (2011) Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug Chem 22:717–727PubMedCrossRefGoogle Scholar
  16. 16.
    Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blattler WA, Goldmacher VS (2006) Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66:3214–3221PubMedCrossRefGoogle Scholar
  17. 17.
    Erickson HK, Widdison WC, Mayo MF, Whiteman K, Audette C, Wilhelm SD, Singh R (2010) Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem 21:84–92PubMedCrossRefGoogle Scholar
  18. 18.
    Chen Q, Millar HJ, McCabe FL, Manning CD, Steeves R, Lai K, Kellogg B, Lutz RJ, Trikha M, Nakada MT, Anderson GM (2007) Alphav integrin-targeted immunoconjugates regress established human tumors in xenograft models. Clin Cancer Res 13:3689–3695PubMedCrossRefGoogle Scholar
  19. 19.
    Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784PubMedCrossRefGoogle Scholar
  20. 20.
    Okeley NM, Miyamoto JB, Zhang X, Sanderson RJ, Benjamin DR, Sievers EL, Senter PD, Alley SC (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res 16:888–897PubMedCrossRefGoogle Scholar
  21. 21.
    Dornan D, Bennett F, Chen Y, Dennis M, Eaton D, Elkins K, French D, Go MA, Jack A, Junutula JR, Koeppen H, Lau J, McBride J, Rawstron A, Shi X, Yu N, Yu SF, Yue P, Zheng B, Ebens A, Polson AG (2009) Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood 114:2721–2729PubMedCrossRefGoogle Scholar
  22. 22.
    DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, Kunz A, Hamann PR, Gorovits B, Udata C, Moran JK, Popplewell AG, Stephens S, Frost P, Damle NK (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103:1807–1814PubMedCrossRefGoogle Scholar
  23. 23.
    Stein R, Mattes MJ, Cardillo TM, Hansen HJ, Chang CH, Burton J, Govindan S, Goldenberg DM (2007) CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res 13:5556s–5563sPubMedCrossRefGoogle Scholar
  24. 24.
    Xie H, Blattler WA (2006) In vivo behaviour of antibody-drug conjugates for the targeted treatment of cancer. Expert Opin Biol Ther 6:281–291PubMedCrossRefGoogle Scholar
  25. 25.
    Foidart J-M, Muschel RJ (2002) Proteases and their inhibitors in cancer metastasis. Kluwer Academic Publishers, Dordrecht/BostonCrossRefGoogle Scholar
  26. 26.
    Lavie G, Zucker-Franklin D, Franklin EC (1980) Elastase-type proteases on the surface of human blood monocytes: possible role in amyloid formation. J Immunol 125:175–180PubMedGoogle Scholar
  27. 27.
    Ciechanover A (2007) Intracellular protein degradation from a vague idea through the lysosome and the ubiquitin-proteasome system and on to human diseases and drug targeting: Nobel Lecture, December 8, 2004. Ann N Y Acad Sci 1116:1–28PubMedCrossRefGoogle Scholar
  28. 28.
    Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48:7022–7032PubMedGoogle Scholar
  29. 29.
    Ciechanover A (2010) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Medicina (Buenos Aires) 70:105–119Google Scholar
  30. 30.
    Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, Girish S, Tibbitts J, Yi JH, Sliwkowski MX, Jacobson F, Lutzker SG, Burris HA (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28:2698–2704PubMedCrossRefGoogle Scholar
  31. 31.
    Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, Senter PD (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19:759–765PubMedCrossRefGoogle Scholar
  32. 32.
    Fishkin N, Maloney EK, Chari RV, Singh R (2011) A novel pathway for maytansinoid release from thioether linked antibody-drug conjugates (ADCs) under oxidative conditions. Chem Commun (Camb) 47:10752–10754CrossRefGoogle Scholar
  33. 33.
    Sanderson RJ, Hering MA, James SF, Sun MM, Doronina SO, Siadak AW, Senter PD, Wahl AF (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11:843–852PubMedGoogle Scholar
  34. 34.
    Lazar AC, Wang L, Blattler WA, Amphlett G, Lambert JM, Zhang W (2005) Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun Mass Spectrom 19:1806–1814PubMedCrossRefGoogle Scholar
  35. 35.
    Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070PubMedCrossRefGoogle Scholar
  36. 36.
    Ikeda H, Hideshima T, Fulciniti M, Lutz RJ, Yasui H, Okawa Y, Kiziltepe T, Vallet S, Pozzi S, Santo L, Perrone G, Tai YT, Cirstea D, Raje NS, Uherek C, Dalken B, Aigner S, Osterroth F, Munshi N, Richardson P, Anderson KC (2009) The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res 15:4028–4037PubMedCrossRefGoogle Scholar
  37. 37.
    Oroudjev E, Lopus M, Wilson L, Audette C, Provenzano C, Erickson H, Kovtun Y, Chari R, Jordan MA (2010) Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol Cancer Ther 9:2700–2713PubMedCrossRefGoogle Scholar
  38. 38.
    Christiansen J, Rajasekaran AK (2004) Biological impediments to monoclonal antibody-based cancer immunotherapy. Mol Cancer Ther 3:1493–1501PubMedGoogle Scholar
  39. 39.
    Greiner JW (1986) Modulation of antigen expression in human tumor cell populations. Cancer Invest 4:239–256PubMedCrossRefGoogle Scholar
  40. 40.
    Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750–4755PubMedGoogle Scholar
  41. 41.
    Rudnick SI, Adams GP (2009) Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 24:155–161PubMedCrossRefGoogle Scholar
  42. 42.
    Saga T, Neumann RD, Heya T, Sato J, Kinuya S, Le N, Paik CH, Weinstein JN (1995) Targeting cancer micrometastases with monoclonal antibodies: a binding-site barrier. Proc Natl Acad Sci USA 92:8999–9003PubMedCrossRefGoogle Scholar
  43. 43.
    Drewinko B, Patchen M, Yang LY, Barlogie B (1981) Differential killing efficacy of twenty antitumor drugs on proliferating and nonproliferating human tumor cells. Cancer Res 41:2328–2333PubMedGoogle Scholar
  44. 44.
    Rao PN, Freireich EJ, Smith ML, Loo TL (1979) Cell cycle phase-specific cytotoxicity of the antitumor agent maytansine. Cancer Res 39:3152–3155PubMedGoogle Scholar
  45. 45.
    Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234PubMedCrossRefGoogle Scholar
  46. 46.
    Hamann PR, Hinman LM, Beyer CF, Greenberger LM, Lin C, Lindh D, Menendez AT, Wallace R, Durr FE, Upeslacis J (2005) An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug Chem 16:346–353PubMedCrossRefGoogle Scholar
  47. 47.
    Matsui H, Takeshita A, Naito K, Shinjo K, Shigeno K, Maekawa M, Yamakawa Y, Tanimoto M, Kobayashi M, Ohnishi K, Ohno R (2002) Reduced effect of gemtuzumab ozogamicin (CMA-676) on P-glycoprotein and/or CD34-positive leukemia cells and its restoration by multidrug resistance modifiers. Leukemia 16:813–819PubMedCrossRefGoogle Scholar
  48. 48.
    Walter RB, Raden BW, Hong TC, Flowers DA, Bernstein ID, Linenberger ML (2003) Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood 102:1466–1473PubMedCrossRefGoogle Scholar
  49. 49.
    Toppmeyer DL, Slapak CA, Croop J, Kufe DW (1994) Role of P-glycoprotein in dolastatin 10 resistance. Biochem Pharmacol 48:609–612PubMedCrossRefGoogle Scholar
  50. 50.
    Butryn RK, Smith KS, Adams EG, Abraham I, Stackpole J, Sampson KE, Bhuyan BK (1994) V79 Chinese hamster lung cells resistant to the bis-alkylator bizelesin are multidrug-resistant. Cancer Chemother Pharmacol 34:44–50PubMedCrossRefGoogle Scholar
  51. 51.
    Zsido TJ, Beerman TA, Meegan RL, Woynarowski JM, Baker RM (1992) Resistance of CHO cells expressing P-glycoprotein to cyclopropylpyrroloindole (CPI) alkylating agents. Biochem Pharmacol 43:1817–1822PubMedCrossRefGoogle Scholar
  52. 52.
    Tang R, Cohen S, Perrot JY, Faussat AM, Zuany-Amorim C, Marjanovic Z, Morjani H, Fava F, Corre E, Legrand O, Marie JP (2009) P-gp activity is a critical resistance factor against AVE9633 and DM4 cytotoxicity in leukaemia cell lines, but not a major mechanism of chemoresistance in cells from acute myeloid leukaemia patients. BMC Cancer 9:199PubMedCrossRefGoogle Scholar
  53. 53.
    Loo TW, Clarke DM (2005) Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol 206:173–185PubMedCrossRefGoogle Scholar
  54. 54.
    Kovtun Y, Jones G, Audette C, Mayo M, Leece B, Zhao R, Clancy L, Sun X, Chari R, Singh R (2010) 235. Negatively-charged sulfonate group in linker improves potency of antibody–maytansinoid conjugates against multidrug-resistant cancer cells. 22nd EORTC-NCI-AACR symposium on molecular targets and cancer therapeutics, Berlin, GermanyGoogle Scholar
  55. 55.
    Qin A, Watermill J, Mastico RA, Lutz RJ, O’Keeffe J, Zildjian S, Mita AC, Phan AT, Tolcher AW (2008) The pharmacokinetics and pharmacodynamics of IMGN242 (huC242-DM4) in patients with CanAg-expressing solid tumors. ASCO Meet Abstr 26:3066Google Scholar
  56. 56.
    Tolcher AW, Ochoa L, Hammond LA, Patnaik A, Edwards T, Takimoto C, Smith L, de Bono J, Schwartz G, Mays T, Jonak ZL, Johnson R, DeWitte M, Martino H, Audette C, Maes K, Chari RV, Lambert JM, Rowinsky EK (2003) Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 21:211–222PubMedCrossRefGoogle Scholar
  57. 57.
    Xie H, Audette C, Hoffee M, Lambert JM, Blattler WA (2004) Pharmacokinetics and biodistribution of the antitumor immunoconjugate, cantuzumab mertansine (huC242-DM1), and its two components in mice. J Pharmacol Exp Ther 308:1073–1082PubMedCrossRefGoogle Scholar
  58. 58.
    Younes A, Gordon L, Kim S, Romaguera J, Copeland AR, de Castro Farial S, Kwak L, Fayad L, Hagemeister F, Fanale M, Lambert J, Bagulho T, Morariu-Zamfir R (2009) Phase I multi-dose escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous (IV) infusion every 3 weeks to patients with relapsed/refractory B-Cell non-Hodgkin’s lymphoma (NHL). ASH Annu Meet Abstr 114:585Google Scholar
  59. 59.
    Lapusan S, Vidriales MB, Thomas X, de Botton S, Vekhoff A, Tang R, Dumontet C, Morariu-Zamfir R, Lambert JM, Ozoux ML, Poncelet P, San Miguel JF, Legrand O, Deangelo DJ, Giles FJ, Marie JP (2012) Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest New Drugs 30(3):1121–1131PubMedCrossRefGoogle Scholar
  60. 60.
    Thompson DS, Patnaik A, Bendell JC, Papadopoulos K, Infante JR, Mastico RA, Johnson D, Qin A, O’Leary JJ, Tolcher AW (2010) A phase I dose-escalation study of IMGN388 in patients with solid tumors. ASCO Meet Abstr 28:3058Google Scholar
  61. 61.
    Lambert JM (2010) Antibody-maytansinoid conjugates: a new strategy for the treatment of cancer. Drugs of the future 35:471–480Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Victor S. Goldmacher
    • 1
  • Rajeeva Singh
    • 1
  • Thomas Chittenden
    • 1
  • Yelena Kovtun
    • 1
  1. 1.ImmunoGen, Inc.WalthamUSA

Personalised recommendations