Skip to main content

The Preclinical and Clinical Evaluation of VB6-845: An Immunotoxin with a De-Immunized Payload for the Systemic Treatment of Solid Tumors

  • Chapter
  • First Online:
Antibody-Drug Conjugates and Immunotoxins

Abstract

One of the challenges in cancer therapy is to eradicate tumor cells while minimizing the toxic side effects to normal tissue that can rapidly become dose-limiting. In this regard, the unique specificity of antibodies enables the targeting of antigens that are differentially or aberrantly expressed on tumor cells while ignoring their normal counterparts [1]. To date, six IgG antibodies have received FDA approval for the treatment of cancer, Herceptin (Trastuzumab), Rituxan (Rituximab), Avastin (Bevacizumab), Campath (Alemtuzumab), Erbitux (Cetuximab), and Vectibix (Panitumumab), and all have shown varying degrees of clinical and commercial success [2]. While designed to target tumor cells with nanomolar affinity, clinical evidence would suggest that the anticancer mechanisms mediated by these antibodies are not on their own sufficient to provide a prolonged clinical benefit [3].To that end, other strategies have been explored to enhance antibody potency while still exploiting their targeting function. One such approach has been to attach a cytotoxic payload to an antibody that when delivered to a cancer cell induces a highly potent cell death signal [4]. The most common payloads attached to antibodies or antibody fragments are small molecule drugs, radionucleotides, and toxins [1, 5–8]. Two radionucleotide-conjugated antibodies Zevalin (Ibritumomab tiuxetan) and Bexxar (Tositumomab-/I131) and one antibiotic-conjugated antibody Mylotarg (Gemtuzumab Ozogamicin) have been approved, although Mylotarg was subsequently withdrawn [9]. In addition, Ontak a diptheria toxin (DT) conjugated to an IL2 cytokine received approval for the treatment of cutaneous T cell lymphoma [10]. A variety of antibody–drug conjugates (ADCs) such as the anti-HER2 trastuzumab-DM-1 are currently being evaluated in the clinic as antibody conjugates have proven themselves superior to the naked antibody in xenograft tumor model [11]. Similarly, a variety of immunotoxins have been evaluated in the clinic, but as yet none have received FDA approval; however, those targeting leukemic cancers such as BL22, an anti-CD22 dsFv linked to truncated Pseudomonas exotoxin A (ETA), have been particularly successful [12, 13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carter PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14(3):154–69

    Article  PubMed  CAS  Google Scholar 

  2. Boyiadzis M, Foon KA (2008) Approved monoclonal antibodies for cancer therapy. Expert Opin Biol Ther 8(8):1151–58

    Article  PubMed  CAS  Google Scholar 

  3. Ross JS, Gray K, Gray GS, Worland PJ, Rolfe M (2003) Anticancer antibodies. Am J Clin Pathol 119:472–85

    Article  PubMed  CAS  Google Scholar 

  4. Teicher BA (2009) Antibody-drug conjugate targets. Curr Cancer Drug Targets 9:982–1004

    Article  PubMed  CAS  Google Scholar 

  5. Hellström I, Hellström KE, Siegall CB, Trail PA (1995) Immunoconjugates and immunotoxins for therapy of carcinomas. Adv Pharmacol 33:349–88

    Article  PubMed  Google Scholar 

  6. Reiter Y (2001) Recombinant immunotoxins in targeted cancer cell therapy. Adv Cancer Res 81:93–124

    Article  PubMed  CAS  Google Scholar 

  7. Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–66

    Article  PubMed  CAS  Google Scholar 

  8. Kreitman RJ (2006) Immunotoxins for targeted cancer therapy. AAPS J 8(3):E532–51

    Article  PubMed  CAS  Google Scholar 

  9. Van Arnum P (2008) Antibody drug conjugates: a marriage of biologics and small molecules. Pharm Technol. http://pharmtech.findpharma.com/pharmtech/Ingredients+Insider/Antibody-Drug-Conjugates-A-Marriage-of-Biologics-a/ArticleStandard/Article/detail/522139. Accessed 5 Nov 2010

  10. Turturro F (2007) Denileukin diftitox: a biotherapeutic paradigm shift in the treatment of lymphoid-derived disorders. Expert Rev Anticancer Ther 7(1):11–17

    Article  PubMed  CAS  Google Scholar 

  11. Phillips GD, Li G, Duggar DL, Crocker LM, Parsons KL, Mai E, Blattler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX (2008) Targeting HER2-positive breast cancer with Trastuzumab-DM1 an antibody-cytotoxic drug conjugate. Cancer Res 68(22):9280–9290

    Article  Google Scholar 

  12. Kreitman RJ, Pastan I (2006) Immunotoxins in the treatment of hematologic malignancies. Curr Drug Targets 7(10):1301–11

    Article  PubMed  CAS  Google Scholar 

  13. Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM, Stetler-Stevenson M, FitzGerald DJ, Pastan I (2010) Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and Phase I clinical trial. Clin Cancer Res 16(6):1894–1903

    Article  PubMed  CAS  Google Scholar 

  14. Frankel AE (2004) Reducing the immune response to immuntotoxin. Commentary re R. Hassan et al., Pretreatment with Rituximab does not inhibit the human immune response against the immunogenic protein LMB-1. Clin Cancer Res 10:13–15

    Article  PubMed  CAS  Google Scholar 

  15. MacDonald GC, Glover N (2005) Effective tumor targeting: strategies for the delivery of armed antibodies. Curr Opin Drug Discov Devel 8(2):177–83

    PubMed  CAS  Google Scholar 

  16. Niv R, Cohen CJ, Denkberg G, Segal D, Reiter Y (2001) Antibody engineering for targeted therapy of cancer: recombinant Fv-immunotoxins. Curr Pharm Biotechnol 2:19–46

    Article  PubMed  CAS  Google Scholar 

  17. Brinkmann U, Keppler-Hafkemeyer A, Hafkemeyer P (2001) Recombinant immunotoxins for cancer therapy. Expert Opin Biol Ther 1(4):693–702

    Article  PubMed  CAS  Google Scholar 

  18. Li Z, Yu T, Zhao P, Ma J (2005) Immunotoxins and cancer therapy. Cell Mol Immunol 2(2):106–12

    PubMed  CAS  Google Scholar 

  19. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–37

    Article  PubMed  CAS  Google Scholar 

  20. MacDonald GC, Rasamoelisolo M, Entwistle J, Cizeau J, Bosc D, Cuthbert W, Kowalski M, Spearman M, Glover N (2008) A Phase I clinical study of VB4-845: weekly intratumoral administration of an anti-EpCAM recombinant fusion protein in patients with sqamous cell carcinoma of the head and neck. Drug Des Dev Ther 2:105–14

    CAS  Google Scholar 

  21. MacDonald GC, Rasamoelisolo M, Entwistle J, Cuthbert W, Kowalski M, Spearman MA, Glover N (2009) A Phase I clinical study of intratumorally administered VB4-845, an anti-epithelial cell adhesion molecule recombinant fusion protein, in patients with squamous cell carcinoma of the head and neck. Med Oncol 26(3):257–64

    Article  PubMed  CAS  Google Scholar 

  22. Kowalski M, Entwistle J, Cizeau J, Niforos D, Loewen S, Chapman W, MacDonald GC (2010) A phase I study of an intravesically administered immunotoxin targeting EpCAM for the treatment of non muscle-invasive bladder cancer in BCG-refractory and BCG-intolerant patients. Drug Des Devel Ther 4:313–20

    PubMed  CAS  Google Scholar 

  23. Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I (2000) Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc Natl Acad Sci USA 97(15):8548–53

    Article  PubMed  CAS  Google Scholar 

  24. Onda M, Beers R, Xiang L, Nagata S, Wang Q, Pastan I (2008) An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc Natl Acad Sci USA 105(32):11311–16

    Article  PubMed  CAS  Google Scholar 

  25. Nagata S, Pastan I (2009) Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics. Adv Drug Deliv Rev 61(11):977–85

    Article  PubMed  CAS  Google Scholar 

  26. De Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28(11):482–90

    Article  PubMed  Google Scholar 

  27. Stas P, Lasters I (2009) Strategies for preclinical immunogenicity assessment of protein therapeutics. IDrugs 12(3):169–73

    PubMed  CAS  Google Scholar 

  28. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ (2010) Immunogenicity of protein therapeutics the key causes, consequences and challenges. Self/Nonself 1(4):314–22

    Article  PubMed  Google Scholar 

  29. Bolognesi A, Barbieri L, Carnicelli D, Abbondanza A, Cenini P, Falasca AI, Dinota A, Stirpe F (1989) Purification and properties of a new ribosome-inactivating protein with RNA N-glycosidase activity suitable for immunotoxin preparation from the seeds of Momordica cochinchinensis. Biochim Biophys Acta 993:287–92

    Article  PubMed  CAS  Google Scholar 

  30. Bolognesi A, Barbieri L, Abbondanza A, Falasca AI, Carnicelli D, Battelli MG, Stirpe F (1990) Purification and properties of new ribosome-inactivating proteins with RNA N-glycosidase activity. Biochim Biophys Acta 1087:293–302

    Article  PubMed  CAS  Google Scholar 

  31. Barbieri L, Battelli MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154:237–82

    Article  PubMed  CAS  Google Scholar 

  32. Bolognesi A, Polito L, Tazzari PL, Lemoli RM, Lubelli C, Fogli M, Boon L, De Boer M, Stirpe F (2000) In vitro anti-tumour activity of anti-CD80 and anti-CD86 immunotoxins containing type 1 ribosome-inactivating proteins. Br J Haematol 110:351–61

    Article  PubMed  CAS  Google Scholar 

  33. den Hartog MT, Lubelli C, Boon L, Heerkens S (2002) Ortiz Buijsse AP, de Boer M, Stirpe F. Cloning and expression of cDNA coding for bouganin. A type-I ribosome-inactivating protein from Bougainvillea spectabilis Willd. Eur J Biochem 269:1772–79

    Article  Google Scholar 

  34. Cizeau J, Grenkow DM, Brown JG, Entwistle J, MacDonald GC (2009) Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin. J Immunother 32(6):574–84

    Article  PubMed  CAS  Google Scholar 

  35. Willuda J, Honegger A, Waibel R, Schubiger A, Stahel R, Zangemeister-Wittke U, Pluckthun A (1999) High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res 59:5758–67

    PubMed  CAS  Google Scholar 

  36. Litvinov SV, van Driel W, van Rhijn CM, Bakker HAM, van Krieken H, Fleuren GJ, Warnaar SO (1996) Expression of Ep-CAM in cervical squamous epithelia correlates with an increased proliferation and the disappearance of markers for terminal differentiation. Am J Pathol 148(3):865–75

    PubMed  CAS  Google Scholar 

  37. Went P, Dirnhofer S, Schöpf D, Moch H, Spizzo G (2008) Expression and prognostic significance of EpCAM. J Cancer Mol 3(6):169–74

    CAS  Google Scholar 

  38. Ralhan R, Cao J, Lim T, MacMillan C, Freeman JL, Walfish PG (2010) EpCAM nuclear localization identifies aggressive thyroid cancer and is a marker for poor prognosis. BMC Cancer 10:331–41

    Article  PubMed  Google Scholar 

  39. Momburg F, Moldenhauer G, Hämmerling GJ, Möller P (1987) Immunohistochemical study of the expression of a M r 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res 47:2883–91

    PubMed  CAS  Google Scholar 

  40. Ogura E, Senzaki H, Yoshizawa K, Hioki K, Tsubura A (1998) Immunohistochemical localization of epithelial glycoprotein EGP-2 and carcinoembryonic antigen in normal colonic mucosa and colorectal tumors. Anticancer Res 18:3669–75

    PubMed  CAS  Google Scholar 

  41. Xie X, Wang C, Cao Y, Wang W, Zhuang R, Chen L, Dang N, Fang L, Jin B (2005) Expression pattern of epithelial cell adhesion molecule on normal and malignant colon tissues. World J Gastroenterol 11(3):344–47

    PubMed  CAS  Google Scholar 

  42. Münz M, Kieu C, Mack B, Schmitt B, Zeidler R, Gires O (2004) The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23:5748–58

    Article  PubMed  Google Scholar 

  43. Food and Drug Administration (FDA) (1997) Points to consider in the manufacture and testing of monoclonal antibody products for human use

    Google Scholar 

  44. Balzar M, Winter MJ, de Boer CJ, Litvinov SV (1999) The biology of the 17-1A antigen (Ep-CAM). J Mol Med 77:699–712

    Article  PubMed  CAS  Google Scholar 

  45. Winter MJ, Nagtegaal ID, Han J, van Krieken JM, Litvinov SV (2003) The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am J Pathol 163(6):2139–48

    Article  PubMed  CAS  Google Scholar 

  46. Went PTH, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G, Dirnhofer S (2004) Frequent EpCam protein expression in human carcinomas. Hum Pathol 35(1):122–28

    Article  PubMed  CAS  Google Scholar 

  47. Brown JG, Entwistle J, Glover N, MacDonald GC (2008) Preclinical safety evaluation of immunotoxins. In: Cavagnaro JA (ed) Preclinical safety evaluation of biopharmaceuticals. A science-based approach to facilitating clinical trials. John Wiley & Sons, Hoboken, NJ, pp 649–68

    Google Scholar 

  48. Brown J, Rasamoelisolo M, Spearman M, Bosc D, Cizeau J, Entwistle J, MacDonald GC (2009) Preclinical assessment of an anti-EpCAM immunotoxin: locoregional delivery provides a safer alternative to systemic administration. Cancer Biother Radiopharm 24(4):477–87

    Article  PubMed  CAS  Google Scholar 

  49. Siegall CB, Liggitt D, Chace D, Tepper MA, Fell HP (1994) Prevention of immunotoxin-mediated vascular leak syndrome in rats with retention of antitumor activity. Proc Natl Acad Sci USA 91(20):9514–18

    Article  PubMed  CAS  Google Scholar 

  50. Frankel AE, Kreitman RJ, Sausville EA (2000) Targeted toxins. Clin Cancer Res 6:326–34

    PubMed  CAS  Google Scholar 

  51. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G, Pazdur R (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–96

    PubMed  CAS  Google Scholar 

  52. McLaughlin PMJ, Kroesen B, Dokter WHA, van der Molen H, de Groot M, Brinker MGL, Kok K, Ruiters MHJ, Buys CHCM, de Leij LFMH (1999) An EGP-2/Ep-CAM-expressing transgenic rat model to evaluate antibody-mediated immunotherapy. Cancer Immunol Immunother 48:303–11

    Article  PubMed  CAS  Google Scholar 

  53. McLaughlin PMJ, Harmsen MC, Dokter WH, Kroesen B, van der Molen H, Brinker MGL, Hollema H, Ruiters MHJ, Buys CHCM, de Leij LFMH (2001) The epithelial glycoprotein 2 (EGP-2) promoter-driven epithelial-specific expression of EGP-2 in transgenic mice: a new model to study carcinoma-directed immunotherapy. Cancer Res 61(10):4105–11

    PubMed  CAS  Google Scholar 

  54. Mosolits S, Campbell F, Litvinov SV, Fagerberg J, Crowe JS, Mellstedt H, Ellis JH (2004) Targeting human Ep-CAM in transgenic mice by anti-idiotype and antigen based vaccines. Int J Cancer 112:669–77

    Article  PubMed  CAS  Google Scholar 

  55. Food and Drug Administration (FDA) (2005) Estimating the safe starting dose in clinical trial for therapeutics in adult healthy volunteers

    Google Scholar 

  56. Food and Drug Administration (FDA) (2006) General guide for starting dose selection for a cytotoxic agent in cancer patients. Available from http://www.fda.gov/cder/cancer/docs/doseflow.pdf. Accessed on 3 Nov 2010

  57. Wierda D, Smith HW, Zwickl CM (2001) Immunogenicity of biopharmaceuticals in laboratory animals. Toxicology 158:71–74

    Article  PubMed  CAS  Google Scholar 

  58. Harding FA, Stickler MM, Razo J, DuBridge RB (2010) The immunogenicity of humanized and fully human antibodies. Residual immunogenicity resides in the CDR regions. mAbs 2(3):256–65

    Article  PubMed  Google Scholar 

  59. Cizeau J, Torres MGP, Cowling SG, Stibbard S, Premsukh A, Entwistle J, MacDonald GC (2011) Fusogenics: a recombinant immunotoxin-based screening platform to select internalizing tumor-specific antibody fragments. J Biomol Screen 16(1):90–100

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen C. MacDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Entwistle, J., Kowalski, M., Brown, J., Cizeau, J., MacDonald, G.C. (2013). The Preclinical and Clinical Evaluation of VB6-845: An Immunotoxin with a De-Immunized Payload for the Systemic Treatment of Solid Tumors. In: Phillips, G. (eds) Antibody-Drug Conjugates and Immunotoxins. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5456-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5456-4_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5455-7

  • Online ISBN: 978-1-4614-5456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics