Abstract
The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of the glutamine repeat in huntingtin leads to the debilitating neurodegenerative disease, Huntington’s disease. Similarly, there are a range of other disorders caused by trinucleotide repeat expansions encoding polyglutamine or polyalanine tracts. The age of onset of the polyglutamine-induced neurodegenerative diseases is usually negatively correlated with the length of expanded CAG/glutamine repeat. However, recent studies have given evidence that single amino acid repeats may also play critical roles in normal protein function and that changes in the length of single amino acid repeats is likely to play a beneficial role in evolution. This chapter will look at the prevalence, function and possible role single amino acid repeats have in evolution and other biological processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822):860–921.
Cooper DN. Nature encyclopedia of the human genome. Nature Publ Group; 2003.
Karlin S, Burge C. Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc Natl Acad Sci U S A 1996; 93(4):1560–1565.
Green H, Wang N. Codon reiteration and the evolution of proteins. Proc Natl Acad Sci U S A 1994; 91(10):4298–4302.
Faux NG, Bottomley SP, Lesk AM et al. Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res 2005; 15(4):537–551.
Jorda J, Kajava AV. Protein homorepeats sequences, structures, evolution, and functions. Adv Protein Chem Struct Biol 2010; 79:59–88.
Huntley MA, Golding GB. Neurological proteins are not enriched for repetitive sequences. Genetics 2004; 166(3):1141–1154.
Karlin S, Brocchieri L, Bergman A et al. Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A 2002; 99(1):333–338.
Albà MM, Guigó R. Comparative analysis of amino acid repeats in rodents and humans. Genome Res 2004; 14(4):549–554.
Mar Alba M, Santibanez-Koref MF, Hancock JM. Amino acid reiterations in yeast are overrepresented in particular classes of proteins and show evidence of a slippage-like mutational process. J Mol Evol 1999; 49(6):789–797.
Holtzman JL. Amyloid-β vaccination for Alzheimer’s dementia. The Lancet 2008; 372(9647):1381–1381.
Kreil D, Kreil G. Asparagine repeats are rare in mammalian proteins. Trends Biochem Sci 2000; 25(6):270–271.
Sumiyama K, Washio-Watanabe K, Saitou N et al. Class III POU genes: generation of homopolymeric amino acid repeats under GC pressure in mammals. J Mol Evol 1996; 43(3):170–178.
Nakachi Y, Hayakawa T, Oota H et al. Nucleotide compositional constraints on genomes generate alanine-,glycine-, and proline-rich structures in transcription factors. Mol Biol Evol 1997; 14(10): 1042–1049.
Cocquet J, de Baere E, Caburet S et al. Compositional biases and polyalanine runs in humans. Genetics 2003; 165(3):1613–1617.
Veitia R. Amino acids runs and genomic compositional biases in vertebrates. Genomics 2004; 83(3):502–507.
Bernardi G. The compositional evolution of vertebrate genomes. Gene 2000;259(1–2):31–43.
Caburet S, Vaiman D, Veitia R. A genomic basis for the evolution of vertebrate transcription factors containing amino acid runs. Genetics 2004; 167(4):1813–1820.
Hancock J, Worthey E, Santibanez-Koref M. Arole for selection inregulatingthe evolutionary emergence of disease-causing and other coding CAGrepeats inhumans and mice. Mol Biol Evol 2001; 18(6):1014–1023.
Hancock JM, Simon M. Simple sequence repeats in proteins and their significance for network evolution. Gene 2005; 345(1): 113–118.
Ogasawara M, Imanishi T, Moriwaki K et al. Length variation of CAG/CAA triplet repeats in 50 genes among 16 inbred mouse strains. Gene 2005; 349:107–119.
Faux N, Huttley G, Mahmood K et al. RCPdb: An evolutionary classification and codon usage database for repeat-containing proteins. Genome Res 2007; 17(7):1118–1127.
Alba MM, Santibanez-Koref MF, Hancock JM. Conservation of polyglutamine tract size between mice and humans depends on codon interruption. Mol Biol Evol 1999; 16(11): 1641–1644.
Alba MM, Santibanez-Koref MF, Hancock JM. The comparative genomics of polyglutamine repeats: extreme differences in the codon organization of repeat-encoding regions between mammals and Drosophila. J Mol Evol 2001; 52(3):249–259.
Oma Y, Kino Y, Sasagawa N et al. Intracellular localization of homopolymeric amino acid-containing proteins expressed in mammalian cells. J Biol Chem 2004; 279(20):21217–21222.
Dorsman J, Pepers B, Langenberg D et al. Strong aggregation and increased toxicity of polyleucine over polyglutamine stretches in mammalian cells. Hum Mol Genet 2002; 11(13):1487–1496.
Waldvogel HJ, Thu D, Hogg V et al. Selective neurodegeneration, neuropathology and symptom profiles in Huntington’s disease. In: Hannan AJ, ed. Tandem Repeat Polymorphisms: Genetic Plasticity, Neural Diversity and Disease. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2012:141–152.
Zajac JD, Fui MNT. Kennedy’s disease: clinical significance of tandem repeats in the androgen receptor. In: Hannan AJ, ed. Tandem Repeat Polymorphisms: Genetic Plasticity, Neural Diversity and Disease. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2012:153–168.
Woods KS, Cundall M, Turton J et al. Over-and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am J Hum Genet 2005; 76(5):833–849.
Brito M, Malta-Vacas J, Carmona B et al. Polyglycine expansions in eRF3/GSPTl are associated with gastric cancer susceptibility. Carcinogenesis 2005; 26(12):2046–2049.
McKusick-Nathans Institute for Genetic Medicine J. Online Mendelian Inheritance in Man, OMIM (TM).
Peri S, Navarro J, Kristiansen T et al. Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 2004; 32(Database issue):D497–D501.
Brown LY, Odent S, David V et al. Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination. Hum Mol Genet 2001; 10(8):791–796.
Rudnicki DD, Holmes SE, Lin MW et al. Huntington’s disease-like 2 is associated with CUGrepeat-containing RNA foci. Ann Neurol 2007; 61(3):272–282.
Wilburn B, Rudnicki DD, Zhao J et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron 2011; 70(3):427–440.
Shoubridge C, Gecz J. In: Hannan AJ, ed. Tandem Repeat Polymorphisms: Genetic Plasticity, Neural Diversity and Disease. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2012:185–204.
Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci 2000; 23:217–247.
Wexler NS, Lorimer J, Porter J et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 2004; 101(10):3498–3503.
van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ. Delaying the onset of Huntington’s in mice. Nature 2000; 404(6779):721–722.
Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 1989; 245(4916):371–378.
Perutz MF, Johnson T, Suzuki M, Finch JT. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A 1994; 91(12):5355–5358.
Kazemi-Esfarjani P, Trifiro MA, Pinsky L. Evidence for arepressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance forthe (CAG)n-expanded neuronopathies. Hum Mol Genet 1995; 4(4):523–527.
Galant R, Carroll SB. Evolution of a transcriptional repression domain in an insect Hox protein. Nature 2002; 415(6874):910–913.
Gerber H-P, Scipel K, Georgiev O et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 1994; 263(5148):808–811.
Ren R, Mayer B, Cicchetti P et al. Identification of a ten-amino acid proline-rich SH3 binding site. Science 1993; 259(5098):1157–1161.
Liu YF, Deth RC, Devys D. SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes. J Biol Chem 1997; 272(13):8121–8124.
Sittler A, Wälter S, Wedemeyer N et al. SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell 1998; 2(4):427–436.
Inoue K, Keegstra K. A polyglycine stretch is necessary for proper targeting of the protein translocation channel precursor to the outer envelope membrane of chloroplasts. Plant J 2003; 34(5):661–669.
Calnan B, Tidor B, Biancalana S et al. Arginine-mediated RNA recognition: the arginine fork. Science 1991; 252(5010):1167–1171.
Nam YS, Petrovic A, Jeong KS et al. Exchange of the basic domain of human immunodeficiency virus type 1 Rev for a polyarginine stretch expands the RNA binding specificity, and a minimal arginine cluster is required for optimal RRE RNA binding affinity, nuclear accumulation, and trans-activation. J Virol 2001;75(6):2957–2971.
Uritani M, Nakano K, Aoki Y et al. Polyamino acids that inhibit the interaction of yeast translational elongation factor-3 (EF-3) with ribosomes. J Biochem (Tokyo) 1994; 115(5):820–824.
Shimohata T, Nakajima T, Yamada M et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat Genet 2000; 26(l):29–36.
Fondon J, Garner H. Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci U S A 2004; 101(52): 18058–18063.
Ellegren H. Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 2000; 16(12):551–558.
Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet 2004; 5(6):435–445.
Cleary J, Pearson C. The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet Genome Res 2003; 100(1–4): 25–55.
Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6(8):597–610.
Gutierrez JC, Callejas S, Borniquel S et al. DNA methylation in ciliates: implications in differentiation processes. Int Microbiol 2000; 3(3): 139–146.
Gowher H, Leismann O, Jeltsch A. DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J 2000; 19(24):6918–6923.
Lyko F, Ramsahoye BH, Jaenisch R. DNA methylation in Drosophila melanogaster. Nature 2000; 408(6812):538–540.
Marhold J, Rothe N, Pauli A et al. Conservation of DNA methylation in dipteran insects. Insect Mol Biol 2004; 13(2):117–123.
Hattman S, Kenny C, Berger L et al. Comparative study of DNA methylation in three unicellular eucaryotes. J Bacteriol 1978; 135(3):1156–1157.
Vanyushin BF. Enzymatic DNA methylation is an epigenetic control for genetic functions of the cell. Biochemistry (Mosc) 2005; 70(5):488–499.
Rogers SD, Rogers ME, Saunders G et al. Isolation of mutants sensitive to 2-aminopurine and alkylating agents and evidence for the role of DNA methylation in Penicillium chrysogenum. Curr Genet 1986; 10(7):557–560.
Zhang X, Yazaki J, Sundaresan A et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 2006; 126(6):1189–1201.
Wang Y, Jorda M, Jones PL et al. Functional CpG methylation system in a social insect. Science 2006; 314(5799):645–647.
Varriale A, Bernardi G. DNA methylation and body temperature in fishes. Gene 2006; 385:111–121.
Varriale A, Bernardi G. DNA methylation in reptiles. Gene 2006;385:122–127.
Steward N, Ito M, Yamaguchi Y et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 2002; 277(40):37741–37746.
Wada Y, Miyamoto K, Kusano T et al. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 2004; 271(6):658–666.
O’Neill RJ, O’Neill MJ, Graves JA. Undermethylation associated with retroe lement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 1998; 393(6680):68–72.
Ruden DM, Garfinkel MD, Xiao L et al. Epigenetic regulation of trinucleotide repeat expansions and contractions and the “biased embryos” hypothesis for rapid morphological evolution. Current Genomics 2005; 6:145–155.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Landes Bioscience and Springer Science+Business Media
About this chapter
Cite this chapter
Faux, N. (2012). Single Amino Acid and Trinucleotide Repeats. In: Hannan, A.J. (eds) Tandem Repeat Polymorphisms. Advances in Experimental Medicine and Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5434-2_3
Download citation
DOI: https://doi.org/10.1007/978-1-4614-5434-2_3
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-5433-5
Online ISBN: 978-1-4614-5434-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)