Nutritional Aspects of Cereal Fermentation with Lactic Acid Bacteria and Yeast



Sourdough fermentation is best known and most studied for its effects on the sensory quality and shelf life of baked goods. Acidification, activation of enzymes and their effects on the cereal matrix as well as production of microbial metabolites all produce changes in the dough and bread matrix that also influence the nutritional quality of the products. The nutritional quality is formed through the chemical composition and structure of the fermented foods, i.e. content and bioavailability of nutrients and non-nutrients. Sourdough fermentation can change all of these, as previously reviewed by Poutanen et al. [1] and Katina et al. [2].


  1. 1.
    Poutanen K, Flander F, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26:693–699CrossRefGoogle Scholar
  2. 2.
    Katina K, Arendt E, Liukkonen K-H, Autio K, Flander L, Poutanen K (2005) Potential of ­sourdough for healthier cereal products. Trends Food Sci Technol 16(1–3):104–112CrossRefGoogle Scholar
  3. 3.
    Valjakka TT, Kerojoki H, Katina K (2003) Chapter 11: Sourdough bread in Finland and Eastern Citation Information Europe. In: Kulp K, Lorenz K (eds) Handbook of dough fermentations. Marcel Dekker Inc, New York, USAGoogle Scholar
  4. 4.
    Katina K, Juvonen R, Laitila A, Flander L, Nordlund E, Kariluoto S, Piironen V, Poutanen K (2012) Fermented wheat bran as a functional ingredient in baking. Cereal Chem 189(2): 126–134Google Scholar
  5. 5.
    Lappi J, Selinheimo E, Schwab U, Katina K, Lehtinen P, Mykkänen H, Kolehmainen M, Poutanen K (2010) Sourdough fermentation of wholemeal wheat bread increases solubility of arabinoxylan and protein and decreases postprandial glucose and insulin responses. J Cereal Sci 51(1):152–158CrossRefGoogle Scholar
  6. 6.
    Novotni D, Ćurić D, Bituh M, Barić IC, Škevin D, Čukelj N (2011) Glycemic index and ­phenolics of partially-baked frozen bread with sourdough. Int J Food Sci Nutr 62(1):26–33CrossRefGoogle Scholar
  7. 7.
    Lioger D, Leenhardt F, Demigne C, Remesy C (2007) Sourdough fermentation of wheat ­fractions rich in fibres before their use in processed food. J Sci Food Agric 87:1368–1373CrossRefGoogle Scholar
  8. 8.
    Batifoulier F, Verny M-A, Chanliaud E, Rémésy C, Demigne C (2005) Effect of different ­breadmaking methods on thiamine, riboflavin and pyridoxine contents of wheat bread. J Cereal Sci 42:101–108CrossRefGoogle Scholar
  9. 9.
    Tieking M, Gänzle M (2005) Exopolysaccharides from cereals associated lactobacilli. Trends Food Sci Technol 16:79–84CrossRefGoogle Scholar
  10. 10.
    Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, Brand-Miller JC (2008) Glycemic index, glycemic load, and chronic disease risk – a meta-analysis of observational studies. Am J Clin Nutr 87:627–637Google Scholar
  11. 11.
    Leloup VM, Colonna P, Ring SG (2004) α-Amylase adsorption on starch crystallites. Biotechnol Bioeng 38:127–134CrossRefGoogle Scholar
  12. 12.
    Zhang G, Hamaker B (2009) Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. Crit Rev Food Sci Nutr 49:852–867CrossRefGoogle Scholar
  13. 13.
    Singh J, Dartois A, Kaur L (2010) Starch digestibility in food matrix: a review. Trends Food Sci Technol 21:168–180CrossRefGoogle Scholar
  14. 14.
    Oates CG (1997) Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci Technol 8:375–382CrossRefGoogle Scholar
  15. 15.
    Lauro M, Suortti T, Autio K, Linko P, Poutanen K (1993) Accessibility of barley starch granules to α-amylase during different phases of gelatinization. J Cereal Sci 17:125–136CrossRefGoogle Scholar
  16. 16.
    Zhang G, Ao Z, Hamaker BR (2008) Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure. J Agric Food Chem 56:4686–4694CrossRefGoogle Scholar
  17. 17.
    Björk I, Granfeldt Y, Liljeberg H, Tovar J, Asp NG (1994) Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr 59:699S–705SGoogle Scholar
  18. 18.
    Zhang G, Venkatachalam M, Hamaker BR (2006) Structural basis for the slow digestion property of native cereal starch. Biomacromolecules 7:3259–3266CrossRefGoogle Scholar
  19. 19.
    Östman E (2003) Fermentation as a means of optimizing the glycaemic index – food mechanisms and metabolic merits with emphasis on lactic acid in cereal products. Ph.D. thesis, Lund University, Department of Applied Nutrition and Food ChemistryGoogle Scholar
  20. 20.
    Zhang G, Sofyan M, Hamaker BR (2008) Slowly digestible state of starch: mechanism of slow digestion property of gelatinized maize starch. J Agric Food Chem 56:4695–4702CrossRefGoogle Scholar
  21. 21.
    Fardet A, Leenhardt F, Lioger D, Scalbert A, Rémésy C (2006) Parameters controlling the glycaemic response to breads. Nutr Res Rev 19:18–25CrossRefGoogle Scholar
  22. 22.
    Liljeberg H, Lönner C, Björck I (1995) Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. J Nutr 125:1503–1511Google Scholar
  23. 23.
    De Angelis M, Coda R, Silano M, Minervini F, Rizzello C, Di Cagno R, Vicentini O, De Vincenzi M, Gobbetti M (2006) Fermentation by selected sourdough lactic acid bacteria to decrease coeliac intolerance to rye flour. J Cereal Sci 43:301–314CrossRefGoogle Scholar
  24. 24.
    De Angelis M, Damiano N, Rizzello CG, Cassone A, Di Cagno R, Gobbetti M (2009) Sourdough fermentation as a tool for the manufacture of low-glycemic index white wheat bread enriched in dietary fibre. Eur Food Res Technol 229:593–601CrossRefGoogle Scholar
  25. 25.
    Maioli M, Pes GM, Sanna M, Cherchi S, Dettori M, Manca E, Farris GA (2008) Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance. Acta Diabetol 45:91–96CrossRefGoogle Scholar
  26. 26.
    Juntunen K, Laaksonen D, Autio K, Niskanen L, Holst J, Savolainen K, Liukkonen K-H, Poutanen K, Mykkänen H (2003) Structural differences between rye and wheat bread but not total fiber content may explain the lower postprandial insulin response to rye bread. Am J Clin Nutr 78:957–964Google Scholar
  27. 27.
    Liljeberg H, Björck I (1998) Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr 52:368–371CrossRefGoogle Scholar
  28. 28.
    Scazzina F, Del Rio D, Pellegrini N, Brighenti F (2009) Sourdough bread: starch digestibility and postprandial glycemic response. J Cereal Sci 49:419–421CrossRefGoogle Scholar
  29. 29.
    Autio K, Liukkonen K-H, Juntunen K, Katina K, Laaksonen D, Mykkänen H, Niskanen L, Poutanen K (2003) Food structure and its relation to starch digestibility and glycaemic response. In: Fischer P, Marti I, Windhab EJ (eds) Third international conference of food ­rheology and structure, Zurich, 10–13 Feb 2003, pp 7–11Google Scholar
  30. 30.
    Gänzle M, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19:513–521CrossRefGoogle Scholar
  31. 31.
    Nilsson M, Holst JJ, Björck IME (2007) Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 85:996–1004Google Scholar
  32. 32.
    Katina K, Laitila A, Juvonen R, Liukkonen K-H, Kariluoto S, Piironen V, Landberg R, Åman P, Poutanen K (2007) Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol 24:175–186CrossRefGoogle Scholar
  33. 33.
    Solomon TPJ, Blannin AK (2007) Effects of short-term cinnamon ingestion on in vivo glucose tolerance. Diabetes Obes Metab 9:895–901CrossRefGoogle Scholar
  34. 34.
    Hardman Fredensborg M, Perry T, Mann J, Chisholm A, Rose M (2010) Rising methods and leavening agents used in the production of bread do not impact the glycaemic index. Asia Pac J Clin Nutr 19:188–194Google Scholar
  35. 35.
    Najjar AM, Parsons PM, Duncan AM, Robinson LE, Yada RY, Graham TE (2009) The acute impact of ingestion of breads of varying composition on blood glucose, insulin and incretins following first and second meals. Br J Nutr 101:391–398CrossRefGoogle Scholar
  36. 36.
    De Angelis M, Rizzello CG, Scala E, De Simone C, Farris GA, Turrini F et al (2007) Probiotic preparation has the capacity to hydrolyze wheat protein responsible for food allergy. J Food Prot 70:135–144Google Scholar
  37. 37.
    Burton P, Lightowler HJ (2006) Influence of bread volume on glycaemic response and satiety. Br J Nutr 96:877–882CrossRefGoogle Scholar
  38. 38.
    Rollán G, De Angelis M, Gobbetti M, de Valdez GF (2005) Proteolytic activity and reduction of gliadin-like fractions by sourdough lactobacilli. J Appl Microbiol 99:1495–1502CrossRefGoogle Scholar
  39. 39.
    Palosuo K (2003) Update on wheat hypersensitivity. Curr Opin Allergy Clin Immunol 3:205–209CrossRefGoogle Scholar
  40. 40.
    Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C, De Vincenzi M et al (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 70:1088e1096Google Scholar
  41. 41.
    Gobbetti M, Rizzello C, Di Cagno R, De Angelis M (2007) Sourdough lactobacilli and celiac disease. Food Microbiol 24:187–196CrossRefGoogle Scholar
  42. 42.
    Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I et al (2007) Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73:4499–4507CrossRefGoogle Scholar
  43. 43.
    Greco L, Gobbetti M, Auricchio R, Di Mase R, Landolfo F, Paparo F, Di Cagno R, De Angelis M, Rizzello CG, Cassone A, Terrone G, Timpone L, D’Aniello M, Maglio M, Troncone R, Auricchio S (2011) Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol 9(1):24–29CrossRefGoogle Scholar
  44. 44.
    Loponen J, Kanerva P, Zhang C, Sontag-Strohm T, Salovaara H, Gänzle M (2009) Prolamin hydrolysis and pentosan solubilization in germinated-rye sourdoughs determined by chromatographic and immunological methods. J Agric Food Chem 57:746–753CrossRefGoogle Scholar
  45. 45.
    Loponen J, Sontag-Strohm T, Venäläinen J, Salovaara H (2007) Prolamin hydrolysis in wheat sourdoughs with differing proteolytic activities. J Agric Food Chem 55:978–984CrossRefGoogle Scholar
  46. 46.
    Coda R, Rizzello CG, Pinto D, Gobbetti M (2012) Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl Environ Microbiol 78(4):1087–1096CrossRefGoogle Scholar
  47. 47.
    Rizzello CG, Nionelli L, Coda R, Gobbetti M (2012) Synthesis of the cancer preventive peptide lunasin by lactic acid bacteria during sourdough fermentation. Nutr Cancer 64:111–120CrossRefGoogle Scholar
  48. 48.
    Rizzello CG, Cassone A, Di Cagno R, Gobbetti M (2008) Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. J Agric Food Chem 56:6936–6943CrossRefGoogle Scholar
  49. 49.
    Adebiyi AP, Adebiyi AO, Yamashita J, Ogawa T, Muramoto K (2009) Purification and characterization of antioxidative peptides derived from rice bran protein hydrolysates. Eur Food Res Technol 228:553–563CrossRefGoogle Scholar
  50. 50.
    Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Karaym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205CrossRefGoogle Scholar
  51. 51.
    Raninen K, Lappi J, Mykkänen H, Poutanen K (2011) Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose. Nutr Rev 69:9–21CrossRefGoogle Scholar
  52. 52.
    Salmenkallio-Marttila M, Katina K, Autio K (2001) Effect of bran fermentation on quality and microstructure of high-fiber wheat bread. Cereal Chem 78:429–435CrossRefGoogle Scholar
  53. 53.
    Eiman G, Amir M, Alkareem A, Moniem A, Mustafa A (2008) Effect of fermentation and particle size of wheat bran on the antinutritional factors and bread quality. Pak J Nutr 7:521–526CrossRefGoogle Scholar
  54. 54.
    Katina K, Liukkonen K-H, Kaukovirta-Norja A, Adlercreutz H, Heinonen S-M, Lampi A-M, Pihlava J-M, Poutanen K (2007) Fermentation-induced changes in the nutritional value of native or germinated rye. J Cereal Sci 46:348–355CrossRefGoogle Scholar
  55. 55.
    Katina K, Salmenkallio-Marttila M, Partanen R, Forssell P, Autio K (2006) Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT- Food Sci Technol 39:479–491CrossRefGoogle Scholar
  56. 56.
    Corsetti A, Gobbetti B, De Marco B, Balestrieri F, Paoletti F, Rossi J (2000) Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. J Agric Food Chem 48:3044–3051CrossRefGoogle Scholar
  57. 57.
    Broekaert WF, Courtin CM, Verbeke K, van de Wiele T, Verstraete W, Delcour JA (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51:178–194CrossRefGoogle Scholar
  58. 58.
    Rizzello CG, Cassone A, Coda R, Gobbetti M (2011) Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chem 127(3):952–959CrossRefGoogle Scholar
  59. 59.
    Kariluoto S, Vahteristo L, Salovaara H, Katina K, Liukkonen K-H, Piironen V (2004) Effect of baking method and fermentation on folate content of rye and wheat breads. Cereal Chem 81:134–139CrossRefGoogle Scholar
  60. 60.
    Liukkonen K-H, Katina K, Wilhelmson A, Myllymäki O, Lampi A-M, Kariluoto S, Piironen V, Heinonen S-M, Nurmi T, Adlercreutz H, Peltoketo A, Pihlava J-M, Hietaniemi V, Poutanen K (2003) Process-induced changes on bioactive compounds in whole grain rye. Proc Nutr Soc 62:117–122CrossRefGoogle Scholar
  61. 61.
    Kariluoto S, Aittamaa M, Korhola M, Salovaara H, Vahteristo L, Piironen V (2006) Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol 106:137–143CrossRefGoogle Scholar
  62. 62.
    Hjortmo S, Patring J, Jastrebova J, Andlid T (2008) Biofortification of folates in white wheat bread by selection of yeast strain and process. Int J Food Microbiol 127:32–36CrossRefGoogle Scholar
  63. 63.
    Hjortmo S, Patring J, Jastrebova J, Andlid T (2005) Inherent biodiversity of folate content and composition in yeasts. Trends Food Sci Technol 16:311–316CrossRefGoogle Scholar
  64. 64.
    Jägerstad M, Piironen V, Walker C, Ros G, Carnovale E, Holasova M, Nau H (2005) Increasing natural food folates through bioprocessing and biotechnology. Trends Food Sci Technol 16:298–306CrossRefGoogle Scholar
  65. 65.
    Gujska E, Michalak J, Klepacka J (2009) Folates stability in two types of rye breads during processing and frozen storage. Plant Foods Hum Nutr 64:129–134CrossRefGoogle Scholar
  66. 66.
    Ternes W, Freund W (1988) Effects of different doughmaking techniques on thiamin content of bread. Getreide Mehl Brot 42:293–297Google Scholar
  67. 67.
    Martinez-Villaluenga C, Michalska A, Frias F, Piskula M-K, Vidal-Valverde C, Zielinski H (2009) Effect of flour extraction rate and baking on thiamine and riboflavin content and antioxidant capacity of traditional rye bread. J Food Sci 74:49–55CrossRefGoogle Scholar
  68. 68.
    Capozzi V, Menga V, Digesù AM, De Vita P, Van Sinderen D, Cattivelli L, Fares C, Spano G (2011) Biotechnological production of vitamin B2-enriched bread and pasta. J Agric Food Chem 59:8013–8020CrossRefGoogle Scholar
  69. 69.
    Wennermark B, Jägerstad M (1992) Breadmaking and storage of various wheat fractions affect vitamin E. J Food Sci 57:1205–1209CrossRefGoogle Scholar
  70. 70.
    García-Estepa R, Guerra-Hernández E, García-Vilanova B (1999) Phytic acid content in milled cereal products and breads. Food Res Int 32:217–221CrossRefGoogle Scholar
  71. 71.
    Chaoui A, Faid M, Belahsen R (2006) Making bread with sourdough improves iron bioavailability from reconstituted fortified wheat flour in mice. J Trace Elem Med Biol 20:217–220CrossRefGoogle Scholar
  72. 72.
    Lopez H, Duclos V, Coudray C, Krespine V, Feillet-Coudray C, Messager A, Demigné C, Rémésy C (2003) Making bread with sourdough improves mineral bioavailability from reconstituted whole wheat flour in rats. Nutrition 19:524–530CrossRefGoogle Scholar
  73. 73.
    Türk M, Carlsson N, Sandberg A-S (1996) Reduction of the levels of phytate during wholemeal bread baking; effects of yeast and wheat phytases. J Cereal Sci 23:257–264CrossRefGoogle Scholar
  74. 74.
    Leenhardt F, Levrat-Verny M-A, Chanliaud E, Remesy C (2005) Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity. J Agric Food Chem 53:98–102CrossRefGoogle Scholar
  75. 75.
    Reale A, Konietzny U, Coppola R, Sorrentino E, Greiner R (2007) The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J Agric Food Chem 55:2993–2997CrossRefGoogle Scholar
  76. 76.
    Shirai K, Revah-Moiseev S, García-Garibay M, Marshall V (1994) Ability of some strains of lactic acid bacteria to degrade phytic acid. Lett Appl Microbiol 19:366–369CrossRefGoogle Scholar
  77. 77.
    Lopez H, Ouvry A, Bervas E, Guy C, Messager A, Demigne C, Remesy C (2000) Strains of lactic acid bacteria isolated from sourdoughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flours. J Agric Food Chem 48:2281–2285CrossRefGoogle Scholar
  78. 78.
    Türk M, Sandberg A-S, Carlsson N, Andlid T (2000) Inositol hexaphosphate hydrolysis by baker’s yeast. Capacity, kinetics and degradation products. J Agric Food Chem 48:100–104CrossRefGoogle Scholar
  79. 79.
    Chaoui A, Faid M, Belhcen R (2003) Effect of natural starters used for sourdough bread in Morocco on phytate biodegradation. East Mediterr Health J 9:141–147Google Scholar
  80. 80.
    Reale A, Mannina L, Tremonte P, Sobolev AP, Succi M, Sorrentino E, Coppola R (2004) Phytate degradation by lactic acid bacteria and yeast during the wholemeal dough fermentation: a 31P NMR study. J Agric Food Chem 52:6300–6305CrossRefGoogle Scholar
  81. 81.
    Haraldsson A-K, Veide J, Andlid T, Larsson Alminger M, Sandberg A-S (2005) Degradation of phytate by high-phytase Saccharomyces cerevisiae during simulated gastrointestinal digestion. J Agric Food Chem 53:5438–5444CrossRefGoogle Scholar
  82. 82.
    Harinder K, Tiwana AS, Kaur B (1998) Studies on the baking of whole wheat meals; effect of pH, acids, milling and fermentation on phytic acid degradation. Adv Food Sci 20:181–189Google Scholar
  83. 83.
    De Angelis M, Gallo G, Corbo MR, McSweeney PL, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–570CrossRefGoogle Scholar
  84. 84.
    Lopez H, Krspine V, Guy C, Messager A, Demigne C, Remesy C (2001) Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. J Agric Food Chem 49:2657–2662CrossRefGoogle Scholar
  85. 85.
    Bryszewska MA, Ambroziak W, Diowksz A, Baxter MJ, Langford NJ, Lewis DJ (2005) Changes in the chemical form of selenium observed during the manufacture of a selenium-enriched sourdough bread for use in a human nutrition study. Food Addit Contam 22(2):135–140CrossRefGoogle Scholar
  86. 86.
    Bryszewska MA, Ambroziak W, Langford NJ, Baxter MJ, Colyer A, Lewis DJ (2007) The effect of consumption of selenium enriched rye/wheat sourdough bread on the body’s selenium status. Plant Foods Hum Nutr 62:121–126CrossRefGoogle Scholar
  87. 87.
    Slavin J (2003) Why whole grains are protective: biological mechanisms. Proc Nutr Soc 62:129–134CrossRefGoogle Scholar
  88. 88.
    Mattila P, Pihlava J-M, Hellström J (2005) Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem 53:8290–8295CrossRefGoogle Scholar
  89. 89.
    Slavin J, Jacobs D, Marquardt L (2000) Grain processing and nutrition. Crit Rev Food Sci Nutr 40:309–326CrossRefGoogle Scholar
  90. 90.
    Bondia-Pons I, Aura A-M, Vuorela S, Kolehmainen M, Mykkänen H, Poutanen K (2009) Rye phenolics in nutrition and health. J Cereal Sci 49:323–336CrossRefGoogle Scholar
  91. 91.
    Rizzello CG, Coda R, Mazzacane F, Minervini D, Gobbetti M (2012) Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread. Food Res Intern 46:304–313CrossRefGoogle Scholar
  92. 92.
    Michalska A, Ceglinska A, Amarowicz R, Piskula M-K, Szawara-Nowak D, Zielinski H (2007) Antioxidant contents and antioxidative properties of traditional rye breads. J Agric Food Chem 55:734–740CrossRefGoogle Scholar
  93. 93.
    Mateo Anson N, Selinheimo E, Havenaar R, Aura A-M, Mattila I, Lehtinen P, van den Berg R, Haenen GRMM, Poutanen K, Bast A (2009) Effect of bioprocessing on in vitro bioaccessibility of phenolic acids and their microbial metabolites from wheat bran. J Agric Food ChemGoogle Scholar
  94. 94.
    Mateo Anson N, Aura A-M, Selinheimo E, Mattila I, Poutanen K, van den Berg R, Havenaar R, Bast A, Haenen GR (2011) Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts anti-inflammatory effects ex vivo. J Nutr 141(1):137–143CrossRefGoogle Scholar
  95. 95.
    Ketabi A, Dieleman LA, Gänzle MG (2011) Influence of isomalto-oligosaccharides on intestinal microbiota in rats. J Appl Microbiol 110:1297–1306CrossRefGoogle Scholar
  96. 96.
    Meyer D, Stasse-Wolthuis M (2009) The bifidogenic effect of inulin and ligofructose and its consequences for gut health. Eur J Clin Nutr 63:1277–1289CrossRefGoogle Scholar
  97. 97.
    Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull 7:1–19CrossRefGoogle Scholar
  98. 98.
    Candela M, Fiori J, Dipalo S, Brigidi P (2010) Development of a high-performance affinity chromatography-based method to study the biological interaction between whole micro-organisms and target proteins. Lett Appl Microbiol 51:678–682CrossRefGoogle Scholar
  99. 99.
    De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177CrossRefGoogle Scholar
  100. 100.
    Sutherland IW (2001) The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227CrossRefGoogle Scholar
  101. 101.
    Korakli M, Gänzle M, Vogel R (2002) Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol 92:958–965CrossRefGoogle Scholar
  102. 102.
    Seo E-C, Nam S-H, Kang H-K, Cho J-Y, Lee H-S, Ryu H-W, Kim D (2007) Synthesis of thermo- and acid-stable novel oligosaccharides by using dextransucrase with high concentration of sucrose. Enzyme Microb Technol 40:1117–1123CrossRefGoogle Scholar
  103. 103.
    Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952CrossRefGoogle Scholar
  104. 104.
    Schwab C, Mastrangelo M, Corsetti A, Gänzle M (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem 85:679–684CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.VTT Technical Research Centre of FinlandEspooFinland

Personalised recommendations