Advertisement

Taxonomy and Biodiversity of Sourdough Yeasts and Lactic Acid Bacteria

Chapter

Abstract

This chapter describes the taxonomy and biodiversity of yeasts and lactic acid bacteria (LAB) isolated from sourdoughs collected around the world. The phylogenetic position of yeast and LAB species found in sourdoughs is discussed, and important problems in taxonomic nomenclature of typical sourdough-associated species are highlighted. An overview is given of factors that may influence the taxonomic composition of sourdough ecosystems, such as geographical location, type of cereals and other raw materials, and technological process parameters. A brief history is provided of the most commonly used approaches to isolate yeast and LAB strains from sourdough samples. Finally, the main techniques for identification of sourdough yeasts and LAB are discussed, emphasizing both on conventional culture-based methods as well as on culture-independent molecular approaches.

Keywords

Internal Transcribe Spacer Lactic Acid Bacterium Lactic Acid Bacterium Strain Lactic Acid Bacterium Isolate Lactic Acid Bacterium Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kurtzman CP, Fell JW (eds) (1998) The yeasts: a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 111–947Google Scholar
  2. 2.
    Suh S-O, Blackwell M, Kurtzman CP, Lachance M-A (2006) Phylogenetics of Saccharomycetales, the ascomycetous yeasts. Mycologia 98:1006–1017CrossRefGoogle Scholar
  3. 3.
    Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245CrossRefGoogle Scholar
  4. 4.
    Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954CrossRefGoogle Scholar
  5. 5.
    Kurtzman CP (2011) Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus. Antonie van Leeuwenhoek 99:13–23CrossRefGoogle Scholar
  6. 6.
    Daniel HM, Redhead SA, Schürer J, Naumov GI, Kurtzman CP (2012) Proposals to conserve the name Wickerhamomyces against Hansenula and to reject the name Saccharomyces sphaericus (Ascomycota: Saccharomycotina). Taxon 61 (2):459–461.CrossRefGoogle Scholar
  7. 7.
    Sugihara TF, Kline L, Miller MW (1971) Microorganisms of the San Francisco sour dough bread process. Appl Microbiol 21:456–458Google Scholar
  8. 8.
    Galli A, Ottogalli G (1973) The microflora of the sour dough of “Panettone” cake. Ann Microbiol 23:39–49Google Scholar
  9. 8.
    Spicher G, Schröder R, Schöllhammer K (1979) Die Mikroflora des Sauerteiges. Z Lebensm Unters Forsch 169:77–81CrossRefGoogle Scholar
  10. 10.
    Barber S, Báguena R, Martínez-Anaya MA, Torner MJ (1983) Microflora of the sour dough of wheat flour bread. I. Identification and functional properties of microorganisms of industrial sour doughs. Rev Agroquím Tecnol Aliment 23:552–562Google Scholar
  11. 11.
    Salovaara H, Savolainen J (1984) Yeast type isolated from Finnish sour rye dough starters. Act Aliment Pol 10:241–246Google Scholar
  12. 12.
    Barber S, Báguena R (1988) Microflora of the sour dough of wheat flour bread. V. Isolation, identification and evaluation of functional properties of sourdough’s microorganisms. Rev Agroquím Tecnol Aliment 28:67–78Google Scholar
  13. 13.
    Galli A, Franzetti L, Fortina MG (1988) Isolation and identification of sour dough microflora. Microbiol Aliment Nutr 6:345–351Google Scholar
  14. 14.
    Hamad SH, Böcker G, Vogel RF, Hammes WP (1992) Microbiological and chemical analysis of fermented sorghum dough for Kisra production. Appl Microbiol Biotechnol 37:728–731CrossRefGoogle Scholar
  15. 15.
    Infantes M, Schmidt JL (1992) Characterization of the yeast flora of natural sourdoughs located in various French areas. Sci Alim 12:271–287Google Scholar
  16. 16.
    Boraam F, Faid M, Larpent JP, Breton A (1993) Lactic acid bacteria and yeasts associated with traditional Moroccan sour-dough bread fermentation. Sci Alim 13:501–509Google Scholar
  17. 17.
    Gobbetti M, Corsetti A, Rossi J, La Rosa F, De Vincenzi S (1994) Identification and clustering of lactic acid bacteria and yeasts from wheat sourdoughs of Central Italy. Ital J Food Sci 6:85–94Google Scholar
  18. 18.
    Obiri-Danso K (1994) Microbiological studies on corn dough fermentation. Cer Chem 71:186–188Google Scholar
  19. 19.
    Iorizzo M, Coppola R, Sorrentino E, Grazia L (1995) Micobiological characterization of sourdough from Molise. Industrie Alimentari XXXIV:1290–1294Google Scholar
  20. 20.
    Almeida MJ, Pais CS (1996) Characterization of the yeast population from traditional corn and rye bread doughs. Lett Appl Micobiol 23:154–158CrossRefGoogle Scholar
  21. 21.
    Foschino R, Terraneo R, Mora D, Galli A (1999) Microbial characterization of sourdoughs for sweet baked products. Ital J Food Sci 11:19–28Google Scholar
  22. 22.
    Mäntynen VH, Korhola M, Gudmundsson H, Turakainen H, Alfredsson GA, Salovaara H, Lindström K (1999) A polyphasic study on the taxonomic position of industrial sour dough yeasts. Syst Appl Microbiol 22:87–96CrossRefGoogle Scholar
  23. 23.
    Rocha JM, Malcata FX (1999) On the microbiological profile of traditional Portuguese sourdough. J Food Prot 62:1416–1429Google Scholar
  24. 24.
    Paramithiotis S, Muller MRA, Ehrmann MA, Tsakalidou E, Seiler H, Vogel R, Kalantzopoulos G (2000) Polyphasic identification of wild yeast strains isolated from Greek sourdoughs. Syst Appl Microbiol 23:156–164CrossRefGoogle Scholar
  25. 25.
    Rosenquist H, Hansen A (2000) The microbial stability of two bakery sourdoughs made from conventionally and organically grown rye. Food Microbiol 17:241–250CrossRefGoogle Scholar
  26. 26.
    Corsetti A, Lavermicocca P, Morea M, Baruzzi F, Tosti N, Gobbetti M (2001) Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy. Int J Food Microbiol 64:95–104CrossRefGoogle Scholar
  27. 27.
    Pulvirenti A, Caggia C, Restuccia C, Gullo M, Giudici P (2001) DNA fingerprinting methods used for identification of yeasts isolated from Sicilian sourdoughs. Ann Microbiol 51:107–120Google Scholar
  28. 28.
    Gullo M, Romano AD, Pulvirenti A, Giudici P (2003) Candida humilis – dominant species in sourdoughs for the production of durum wheat bran flour bread. Int J Food Microbiol 80:55–59CrossRefGoogle Scholar
  29. 29.
    Meroth CB, Hammes WP, Hertel C (2003) Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:7453–7461CrossRefGoogle Scholar
  30. 30.
    Solieri L, De Vero L, Pulvirenti A, Gullo M (2003) A phenotypical and molecular study of yeast species in home-made sourdoughs. Industr Aliment XLII:971–978Google Scholar
  31. 31.
    Succi M, Reale A, Andrighetto C, Lombardi A, Sorrentino E, Coppola R (2003) Presence of yeasts in southern Italian sourdoughs from Triticum aestivum flour. FEMS Microbiol Lett 225:143–148CrossRefGoogle Scholar
  32. 32.
    Foschino R, Gallina S, Andrighetto C, Rossetti L, Galli A (2004) Comparison of cultural methods for the identification and molecular investigation of yeasts from sourdoughs for Italian sweet baked products. FEMS Yeast Res 4:609–618CrossRefGoogle Scholar
  33. 33.
    Gatto V, Torriani S (2004) Microbial population changes during sourdough fermentation monitored by DGGE analysis of 16S and 26S rRNA gene fragments. Ann Microbiol 54:31–42Google Scholar
  34. 34.
    Pulvirenti A, Solieri L, Gullo M, De Vero L, Giudici P (2004) Occurrence and dominance of yeast species in sourdough. Lett Appl Microbiol 38:113–117CrossRefGoogle Scholar
  35. 35.
    Vernocchi P, Valmorri S, Gatto V, Torriani S, Gianotti A, Suzzi G, Guerzoni ME, Gardini F (2004) A survey on yeast microbiota associated with an Italian traditional sweet-leavened baked good fermentation. Food Res Int 37:469–476CrossRefGoogle Scholar
  36. 36.
    Vernocchi P, Valmorri S, Dalai I, Torriani S, Gianotti A, Suzzi G, Guerzoni ME, Mastrocola D, Gardini F (2004) Characterization of the yeast population involved in the production of a typical Italian bread. J Food Sci 69:M182–M186CrossRefGoogle Scholar
  37. 37.
    Lombardi A, Zilio F, Andrighetto C, Zampese L, Loddo A (2007) Micobiological characterization of sourdoughs of Veneto region. Industr Aliment XLVI:147–151Google Scholar
  38. 38.
    Restuccia C, Randazzo C, Pitino I, Caggia C, Fiasconaro N (2007) Phenotypic and genotypic characterization of lactic acid bacteria and yeasts from sourdough for Panettone production. Industr Aliment XLVI:1231–1236Google Scholar
  39. 39.
    Garofalo C, Silvestri G, Aquilanti L, Clementi F (2008) PCR-DGGE analysis of lactic acid bacteria and yeast dynamics during the production processes of three varieties of Panettone. J Appl Microbiol 105:243–254CrossRefGoogle Scholar
  40. 40.
    Vrancken G, De Vuyst L, Van der Meulen R, Huys G, Vandamme P, Daniel HM (2010) Yeast species composition differs between artisan bakery and spontaneous laboratory sourdoughs. FEMS Yeast Res 10:471–481CrossRefGoogle Scholar
  41. 41.
    Iacumin L, Cecchini F, Manzano M, Osualdini M, Boscolo D, Orlic S, Comi G (2009) Description of the microflora of sourdoughs by culture-dependent and culture-independent methods. Food Microbiol 26:128–135CrossRefGoogle Scholar
  42. 42.
    Luangsakul N, Keeratipibul S, Jindamorakot S, Tanasupawat S (2009) Lactic acid bacteria and yeasts isolated from the starter doughs for Chinese steamed buns in Thailand. LWT- Food Sci Technol 42:1404–1412CrossRefGoogle Scholar
  43. 43.
    Osimani A, Zannini E, Aquilanti L, Mannazzu I, Comitini F, Clementi F (2009) Lactic acid bacteria and yeasts from wheat sourdoughs of the Marche region. Ital J Food Sci 21:269–286Google Scholar
  44. 44.
    Saeed M, Anjum FM, Zahoor T, Nawaz H, Rehman SU (2009) Isolation and characterization of starter culture from spontaneous fermentation of sourdough. Int J Agric Biol 11:329–332Google Scholar
  45. 45.
    Paramithiotis S, Tsiasiotou S, Drosinos E (2010) Comparative study of spontaneously fermented sourdoughs originating from two regions of Greece: Peloponnesus and Thessaly. Eur Food Res Technol 231:883–890CrossRefGoogle Scholar
  46. 46.
    Valmorri S, Tofalo R, Settanni L, Corsetti A, Suzzi G (2010) Yeast microbiota associated with spontaneous sourdough fermentations in the production of traditional wheat sourdough breads of the Abruzzo region (Italy). Antonie van Leeuwenhoek 97:119–129CrossRefGoogle Scholar
  47. 47.
    Moroni AV, Arendt EK, Dal Bello F (2011) Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiol 28:497–502CrossRefGoogle Scholar
  48. 48.
    Zhang J, Liu W, Sun Z, Bao Q, Wang F, Yu J, Chen W, Zhang H (2011) Diversity of lactic acid bacteria and yeasts in traditional sourdoughs collected from western region in Inner Mongolia of China. Food Contr 22:767–774CrossRefGoogle Scholar
  49. 49.
    Yarrow D (1978) Candida milleri sp. nov. Int J Syst Bacteriol 28:608–610CrossRefGoogle Scholar
  50. 50.
    Gobbetti M, Corsetti A, Rossi J (1994) The sourdough microflora. Interactions between lactic acid bacteria and yeasts: metabolism of carbohydrates. Appl Microbiol Biotechnol 41:456–460CrossRefGoogle Scholar
  51. 51.
    Daniel HM, Moons MC, Huret S, Vrancken G, De Vuyst L (2011) Wickerhamomyces anomalus in the sourdough microbial ecosystem. Antonie van Leeuwenhoek 99:63–73CrossRefGoogle Scholar
  52. 52.
    Sampaio JP, Gonçalves P (2008) Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol 74:2144–2152CrossRefGoogle Scholar
  53. 53.
    Nel EE, van der Walt JP (1968) Torulopsis humilis, sp. n. Mycopathol Mycol Appl 36:94–96CrossRefGoogle Scholar
  54. 54.
    Meyer SA, Payne RW, Yarrow D (1998) Candida Berkout. In: Kurtzman CP, Fell JW (eds) The yeasts: a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 454–573CrossRefGoogle Scholar
  55. 55.
    Daniel HM, Meyer W (2003) Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. Int J Food Microbiol 86:61–78CrossRefGoogle Scholar
  56. 56.
    Vaughan-Martini A (1995) Saccharomyces barnetti and Saccharomyces spencerorum: two new species of Saccharomyces sensu lato (van der Walt). Antonie van Leeuwenhoek 68:111–118CrossRefGoogle Scholar
  57. 57.
    De Vuyst L, Neysens P (2005) The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Technol 16:43–56CrossRefGoogle Scholar
  58. 58.
    Corsetti A, Settanni L (2007) Lactobacilli in sourdough fermentation. Food Res Int 40:539–558CrossRefGoogle Scholar
  59. 59.
    Orla-Jensen S (1919) The lactic acid bacteria. Fred Host and Son, CopenhagenGoogle Scholar
  60. 60.
    Felis GE, Dellaglio F (2007) Taxonomy of lactobacilli and bifidobacteria. Curr Iss Intest Microbiol 8:44–61Google Scholar
  61. 61.
    Schleifer KH, Ludwig W (1995) Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18:461–467CrossRefGoogle Scholar
  62. 62.
    Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29CrossRefGoogle Scholar
  63. 63.
    Björkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, Korkeala HJ, Vandamme P (2002) Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int J Syst Evol Microbiol 52:141–148Google Scholar
  64. 64.
    Cachat E, Priest FG (2005) Lactobacillus suntoryeus sp. nov., isolated from malt whisky distilleries. Int J Syst Evol Microbiol 55:31–34CrossRefGoogle Scholar
  65. 65.
    Leisner JJ, Vancanneyt M, Lefebvre K, Vandemeulebroecke K, Hoste B, Vilalta NE, Rusul G, Swings J (2002) Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia. Int J Syst Evol Microbiol 52:927–931CrossRefGoogle Scholar
  66. 66.
    Yoon JH, Kang SS, Mheen TI, Ahn JS, Lee HJ, Kim TK, Park CS, Kho YH, Kang KH, Park YH (2000) Lactobacillus kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 50:1789–1795Google Scholar
  67. 67.
    Naser SM, Dawyndt PSR, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Vancanneyt M, Swings J (2007) Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 57:2777–2789CrossRefGoogle Scholar
  68. 68.
    De Vuyst L, Vancanneyt M (2007) Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol 24:120–127CrossRefGoogle Scholar
  69. 69.
    De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26:666–675CrossRefGoogle Scholar
  70. 70.
    Ehrmann MA, Vogel R (2005) Molecular taxonomy and genetics of sourdough lactic acid bacteria. Trends Food Sci Technol 16:31–42CrossRefGoogle Scholar
  71. 71.
    Torriani S, Felis GE, Dellaglio F (2001) Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Environ Microbiol 67:3450–3454CrossRefGoogle Scholar
  72. 72.
    De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalatzopoulos G, Tsakalidou E, Messens W (2002) The biodiversity of lactic acid bacteria in Greek traditional sourdoughs is reflected in both composition and metabolite formation. Appl Environ Microbiol 68:6059–6069CrossRefGoogle Scholar
  73. 73.
    Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36CrossRefGoogle Scholar
  74. 74.
    Scheirlinck I, Van der Meulen R, Vrancken G, De Vuyst L, Settanni L, Vandamme P, Huys G (2009) Polyphasic taxonomic characterization of Lactobacillus rossiae isolates from Belgian and Italian sourdoughs reveals intraspecific heterogeneity. Syst Appl Microbiol 32:151–156CrossRefGoogle Scholar
  75. 75.
    Kline L, Sugihara TF (1971) Microorganisms of the San Francisco sourdough bread process. II. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appl Microbiol 21:459–465Google Scholar
  76. 76.
    Corsetti A, Settanni L, van Sinderen D, Felis GE, Dellaglio F, Gobbetti M (2005) Lactobacillus rossii sp. nov., isolated from wheat sourdough. Int J Syst Evol Microbiol 55:35–40CrossRefGoogle Scholar
  77. 77.
    Naser SM, Hagen KE, Vancanneyt M, Cleenwerck I, Swings J, Tompkins TA et al (1980) Lactobacillus suntoryeus Cachat and Priest 2005 is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919) Bergey et al. 1925 (Approved Lists 1980). J Syst Evol Microbiol 2006(56):355–360Google Scholar
  78. 78.
    Müller MRA, Ehrmann MA, Vogel RF (2000) Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period. Int J Syst Evol Microbiol 50:2127–2133CrossRefGoogle Scholar
  79. 79.
    Ehrmann MA, Müller MRA, Vogel RF (2003) Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int. J Syst Evol Microbiol 53:7–13CrossRefGoogle Scholar
  80. 80.
    Meroth CB, Hammes WP, Hertel C (2004) Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri, sp. nov. Syst Appl Microbiol 27:151–159CrossRefGoogle Scholar
  81. 81.
    Vancanneyt M, Neysens P, De Wachter M, Engelbeen K, Snauwaert C, Cleenwerck I, Van der Meulen R, Hoste B, Tsakalidou E, De Vuyst L, Swings J (2005) Lactobacillus acidifarinae sp. nov. and Lactobacillus zymae sp. nov., from wheat sourdoughs. Int J Syst Evol Microbiol 55:615–620CrossRefGoogle Scholar
  82. 82.
    Valcheva R, Korakli M, Onno B, Prévost H, Ivanova I, Ehrmann MA, Dousset X, Gänzle MG, Vogel RF (2005) Lactobacillus hammessi sp. nov., isolated from French sourdough. Int J Syst Evol Microbiol 55:763–767CrossRefGoogle Scholar
  83. 83.
    Aslam Z, Im WT, Ten LN, Lee MJ, Kim KH, Lee ST (2006) Lactobacillus siliginis sp. nov., isolated from wheat sourdough in South Korea. Int J Syst Evol Microbiol 56:2209–2213CrossRefGoogle Scholar
  84. 84.
    Valcheva R, Ferchichi MF, Korakli M, Ivanova I, Gänzle MG, Vogel RF, Prévost H, Onno B, Dousset X (2006) Lactobacillus nantensis sp. nov., isolated from French wheat sourdough. Int J Syst Evol Microbiol 56:587–591CrossRefGoogle Scholar
  85. 85.
    Ehrmann MA, Brandt M, Stolz P, Vogel RF, Korakli M (2007) Lactobacillus secaliphilus sp. nov, isolated from type II sourdough fermentation. Int J Syst Evol Microbiol 57:745–750CrossRefGoogle Scholar
  86. 86.
    Scheirlinck I, Van der Meulen R, Van Schoor A, Huys G, Vandamme P, De Vuyst L, Vancanneyt M (2007) Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs. Int J Syst Evol Microbiol 57:1461–1467CrossRefGoogle Scholar
  87. 87.
    Scheirlinck I, Van der Meulen R, Van Schoor A, Cleenwerck I, Huys G, Vandamme P, De Vuyst L, Vancanneyt M (2007) Lactobacillus namurensis sp. nov., isolated from a traditional Belgian sourdough. Int J Syst Evol Microbiol 57:223–227CrossRefGoogle Scholar
  88. 88.
    Kashiwagi T, Suzuki T, Kamakura T (2009) Lactobacillus nodensis sp. nov., isolated from rice bran. Int J Syst Evol Microbiol 59:83–86CrossRefGoogle Scholar
  89. 89.
    Corsetti A, Settanni L, Valmorri S, Mastrangelo M, Suzzi G (2007) Identification of subdominant sourdough lactic acid bacteria and their evolution during laboratory-scale fermentations. Food Microbiol 24:592–600CrossRefGoogle Scholar
  90. 90.
    Björkroth J, Dicks LMT, Holzapfel WH (2009) Genus III. Weissella. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, The Firmicutes. Springer, Dordrecht/New York, pp 643–654Google Scholar
  91. 91.
    Villani F, Moschetti G, Blaiotta G, Coppola S (1997) Characterization of strains of Leuconostoc mesenteroides by analysis of soluble whole-cell protein pattern, DNA fingerprinting and restriction of ribosomal DNA. J Appl Microbiol 82:578–588Google Scholar
  92. 92.
    Nigatu A (2000) Evaluation of numerical analyses of RAPD and API 50 CH patterns to differentiate Lactobacillus plantarum, Lact. fermentum, Lact. rhamnosus, Lact. sake, Lact. parabuchneri, Lact. gallinarum, Lact. casei, Weissella minor and related taxa isolated from kocho and tef. J Appl Microbiol 89:969–978CrossRefGoogle Scholar
  93. 93.
    Satokari R, Mattila-Sandholm T, Suihko ML (2000) Identification of pediococci by ribotyping. J Appl Microbiol 88:260–265CrossRefGoogle Scholar
  94. 94.
    Barney M, Volgyi A, Navarro A, Ryder D (2001) Riboprinting and 16S rRNA sequencing for identification of brewery Pediococcus isolates. Appl Environ Microbiol 67:553–560CrossRefGoogle Scholar
  95. 95.
    Rodas AM, Ferrer S, Pardo I (2003) 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol 26:412–422CrossRefGoogle Scholar
  96. 96.
    Nigatu A, Ahrne S, Gashe BA, Molin G (1998) Randomly amplified polymorphic DNA (RAPD) for discrimination of Pediococcus pentosaceus and Ped. acidilactici and rapid grouping of Pediococcus isolates. Lett Appl Microbiol 26:412–416CrossRefGoogle Scholar
  97. 97.
    Mora D, Fortina MG, Parini C, Daffonchio D, Manachini PL (2000) Genomic subpopulations within the species Pediococcus acidilactici detected by multilocus typing analysis: relationships between pediocin AcH/PA-producing and non-producing strains. Microbiology 146:2027–2038Google Scholar
  98. 98.
    Dobson CM, Deneer H, Lee S, Hemmingsen S, Glaze S, Ziola B (2002) Phylogenetic analysis of the genus Pediococcus: Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. Int J Syst Evol Microbiol 52:2003–2010CrossRefGoogle Scholar
  99. 99.
    Pérez G, Cardell E, Zárate V (2002) Random amplified polymorphic DNA analysis for differentiation of Leuconostoc mesenteroides subspecies isolated from Tenerife cheese. Lett Appl Microbiol 34:82–85CrossRefGoogle Scholar
  100. 100.
    Hutkins RW (ed) (2006) Microbiology and technology of fermented foods. Blackwell Publishing, Iowa, pp 1–473CrossRefGoogle Scholar
  101. 101.
    Ottogalli G, Galli A, Foschino R (1996) Italian bakery products obtained with sour dough: characterization of the typical microflora. Adv Food Sci 18:131–144Google Scholar
  102. 102.
    Hammes WP, Brandt MJ, Francis KL, Rosenheim J, Seitter MFH, Vogelmann A (2005) Microbial ecology of cereal fermentations. Trends Food Sci Technol 16:4–11CrossRefGoogle Scholar
  103. 103.
    Arendt EK, Ryan LAM, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174CrossRefGoogle Scholar
  104. 104.
    Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78CrossRefGoogle Scholar
  105. 105.
    Scheirlinck I, Van der Meulen R, Van Schoor A, Vancanneyt M, De Vuyst L, Vandamme P, Huys G (2007) Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs. Appl Environ Microbiol 73:6262–6269CrossRefGoogle Scholar
  106. 106.
    Scheirlinck I, Van der Meulen R, Van Schoor A, Vancanneyt M, De Vuyst L, Vandamme P, Huys G (2008) Taxonomic structure and stability of the bacterial community in Belgian sourdough ecosystems as assessed by culture and population fingerprinting. Appl Environ Microbiol 74:2414–2423CrossRefGoogle Scholar
  107. 107.
    Van der Meulen R, Scheirlinck I, Van Schoor A, Huys G, Vancanneyt M, Vandamme P, De Vuyst L (2007) Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs. Appl Environ Microbiol 73:4741–4750CrossRefGoogle Scholar
  108. 108.
    Weckx S, Van der Meulen R, Allemeersch J, Huys G, Vandamme P, Van Hummelen P, De Vuyst L (2010) Community dynamics of sourdough fermentations as revealed by their metatranscriptome. Appl Environ Microbiol 76:5402–5408CrossRefGoogle Scholar
  109. 109.
    Weckx S, Van der Meulen R, Maes D, Scheirlinck I, Huys G, Vandamme P, De Vuyst L (2010) Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiol 27:1000–1008CrossRefGoogle Scholar
  110. 110.
    Gashe BA (1985) Involvement of lactic acid bacteria in the fermentation of tef (Eragrostis tef), an Ethiopian fermented food. J Food Sci 50:800–801CrossRefGoogle Scholar
  111. 111.
    Infantes L, Tourneur C (1991) Survey on the lactic flora of natural sourdoughs located in various French areas. Sci Alim 11:527–545Google Scholar
  112. 112.
    Gabriel V, Lefebvre D, Vayssier Y, Faucher C (1999) Characterization of microflora from natural sourdoughs. Microbiol Alim Nutr 17:171–179Google Scholar
  113. 113.
    Ferchichi M, Valcheva R, Prevost H, Onno B, Dousset X (2007) Molecular identification of the microbiota of French sourdough using temporal temperature gradient gel electrophoresis. Food Microbiol 24:678–686CrossRefGoogle Scholar
  114. 114.
    Ferchichi M, Valcheva R, Oheix N, Kabadjova P, Prevost H, Onno B, Dousset X (2008) Rapid investigation of French sourdough microbiota by restriction fragment length polymorphism of the 16S-23S rRNA gene intergenic spacer region. World J Microbiol Biotechnol 24:2425–2434CrossRefGoogle Scholar
  115. 115.
    Robert H, Gabriel V, Fontagné-Faucher C (2009) Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR. Int J Food Microbiol 135:53–59CrossRefGoogle Scholar
  116. 116.
    Spicher G (1959) Die Mikroflora des Sauerteiges. I. Mitteilung: Untersuchungen über die Art der in Sauerteigen anzutreffenden stäbchenförmigen Milchsäurebakterien (Genus Lactobacillus Beijerinck). Zeitblatt fur Bakteriologie II Abt 113:80–106Google Scholar
  117. 117.
    Spicher G, Schröder R (1978) Die Mikroflora des Sauerteiges. IV. Mitteilung: Untersuchungen über die Art der in “Reinzuchtsauern” anzutreffenden stäbchenförmigen Milchsäurebakterien (Genus Lactobacillus Beijerinck). Z Lebensm Unters Forsch 167:342–354CrossRefGoogle Scholar
  118. 118.
    Spicher G (1984) Weitere Unterschungen über die Zusammensetzung und die Variabilität der Mikroflora handelsüblicher Sauerteig-Starter. Z Lebensm Unters Forsch 178:106–109CrossRefGoogle Scholar
  119. 119.
    Spicher G (1987) Die Mikroflora des Sauerteiges. XXII. Mitteilung: Die in Weizensauerteigen vorkommenden Lactobacillen. Z Lebensm Unters Forsch 184:300–303CrossRefGoogle Scholar
  120. 120.
    Müller MRA, Wolfrum G, Stolz P, Ehrmann MA, Vogel RF (2001) Monitoring the growth of Lactobacillus species in a sourdough fermentation. Food Microbiol 18:217–227CrossRefGoogle Scholar
  121. 121.
    Kitahara M, Sakata S, Benno Y (2005) Biodiversity of Lactobacillus sanfranciscensis strains isolated from five sourdoughs. Lett Appl Microbiol 40:353–357CrossRefGoogle Scholar
  122. 122.
    Sterr Y, Weiss A, Schmidt H (2009) Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. Int J Food Microbiol 136:75–82CrossRefGoogle Scholar
  123. 123.
    Vogelmann SA, Seitter M, Singer U, Brandt MJ, Hertel C (2009) Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int J Food Microbiol 130:205–212CrossRefGoogle Scholar
  124. 124.
    Coppola S, Pepe O, Masi P, Sepe M (1996) Characterization of leavened doughs for pizza in Naples. Adv Food Sci 18:160–162Google Scholar
  125. 125.
    Zapparoli G, De Benedictis P, Salardi C, Veneri G, Torriani S, Dellaglio F (1996) Lactobacilli of sourdoughs from Verona bakery: a preliminary investigation. Adv Food Sci 18:163–166Google Scholar
  126. 126.
    Zapparoli G, Torriani S, Dellaglio F (1998) Differentiation of Lactobacillus sanfranciscensis strains by randomly amplified polymorphic DNA and pulsed-field gel electrophoresis. FEMS Microbiol Lett 166:325–332CrossRefGoogle Scholar
  127. 127.
    Corsetti A, De Angelis M, Dellaglio F, Paparella A, Fox PF, Settanni L, Gobbetti M (2003) Characterization of sourdough lactic acid bacteria based on genotypic and cell-wall protein analyses. J Appl Microbiol 94:641–654CrossRefGoogle Scholar
  128. 128.
    Randazzo CL, Heilig H, Restuccia C, Giudici P, Caggia C (2005) Bacterial population in traditional sourdough evaluated by molecular methods. J Appl Microbiol 99:251–258CrossRefGoogle Scholar
  129. 129.
    Reale A, Tremonte P, Succi M, Sorrentino E, Coppola R (2005) Exploration of lactic acid bacteria ecosystem of sourdoughs from the Molise region. Ann Microbiol 55:17–22Google Scholar
  130. 130.
    Ricciardi A, Parente E, Piraino P, Paraggio M, Romano P (2005) Phenotypic characterization of lactic acid bacteria from sourdoughs for Altamura bread produced in Apulia (Southern Italy). Int J Food Microbiol 98:63–72CrossRefGoogle Scholar
  131. 131.
    Catzeddu P, Mura E, Parente E, Sanna M, Farris GA (2006) Molecular characterization of lactic acid bacteria from sourdough breads produced in Sardinia (Italy) and multivariate statistical analyses of results. Syst Appl Microbiol 29:138–144CrossRefGoogle Scholar
  132. 132.
    Valmorri S, Settanni L, Suzzi G, Gardini F, Vernocchi P, Corsetti A (2006) Application of a novel polyphasic approach to study the lactobacilli composition of sourdoughs from the Abruzzo region (Central Italy). Let Appl Microbiol 43:343–349CrossRefGoogle Scholar
  133. 133.
    Corsetti A, Settanni L, Lopez CC, Felis GE, Mastrangelo M, Suzzi G (2007) A taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum) kernels and non-conventional flours. Syst Appl Microbiol 30:561–571CrossRefGoogle Scholar
  134. 134.
    Zotta T, Piraino P, Parente E, Salzano G, Ricciardi A (2008) Characterization of lactic acid bacteria isolated from sourdoughs for Cornetto, a traditional bread produced in Basilicata (Southern Italy). World J Microbiol Biotechnol 24:1785–1795CrossRefGoogle Scholar
  135. 135.
    Siragusa S, Di Cagno R, Ercolini D, Minervini F, Gobbetti M, De Angelis M (2009) Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters. Appl Environ Microbiol 75:1099–1109CrossRefGoogle Scholar
  136. 136.
    Zannini E, Garofalo C, Aquilanti L, Santarelli S, Silvestri G, Clementi F (2009) Microbiological and technological characterization of sourdoughs destined for bread-making with barley flour. Food Microbiol 26:744–753CrossRefGoogle Scholar
  137. 137.
    Coda R, Nionelli L, Rizzello CG, De Angelis M, Tossut P, Gobbetti M (2010) Spelt and emmer flours: characterization of the lactic acid bacteria microbiota and selection of mixed starters for bread making. J Appl Microbiol 108:925–935CrossRefGoogle Scholar
  138. 138.
    Minervini F, De Angelis M, Di Cagno R, Pinto D, Siragusa S, Rizzello CG, Gobbetti M (2010) Robustness of Lactobacillus plantarum starters during daily propagation of wheat flour sourdough type I. Food Microbiol 27:897–908CrossRefGoogle Scholar
  139. 139.
    Rizzello CG, Nionelli L, Coda R, De Angelis M, Gobbetti M (2010) Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chem 119:1079–1089CrossRefGoogle Scholar
  140. 140.
    Azar M, Ter-Sarkissian N, Ghavifek H, Ferguson T, Ghassemi H (1977) Microbiological aspects of Sangak bread. J Food Sci Technol 14:251–254Google Scholar
  141. 141.
    Hüttner EK, Dal Bello F, Arendt EK (2010) Identification of lactic acid bacteria isolated from oat sourdoughs and investigation into their potential for the improvement of oat bread quality. Eur Food Res Technol 230:849–857CrossRefGoogle Scholar
  142. 142.
    Moroni AV, Arendt EK, Morrissey JP, Dal Bello F (2010) Development of buckwheat and teff sourdoughs with the use of commercial starters. Int J Food Microbiol 142:142–148CrossRefGoogle Scholar
  143. 143.
    Escalante A, Wacher C, Farres A (2001) Lactic acid bacterial diversity in the traditional Mexican fermented dough pozol as determined by 16S rDNA sequence analysis. Int J Food Microbiol 64:21–31CrossRefGoogle Scholar
  144. 144.
    Faid M, Boraam F, Zyani I, Larpent JP (1994) Characterization of sourdough bread ferments made in the laboratory by traditional methods. Z Lebensm Unters Forsch 198:287–291CrossRefGoogle Scholar
  145. 145.
    Edema MO, Sanni AI (2006) Micro-population of fermenting maize meal for sour maize bread production in Nigeria. Nig J Microbiol 20:937–946Google Scholar
  146. 146.
    Kazanskaya LN, Afanasyeva OV, Patt VA (1983) Microflora of rye sours and some specific features of its accumulation in bread baking plants of the USSR. In: Holas J, Kratochvil F (eds) Developments in food science, vol 5B, Progress in cereal chemistry and technology. Elsevier, London, pp 759–763Google Scholar
  147. 147.
    Barber S, Báguena R (1989) Microflora de la masa madre panaria. XI. Evolución de la microflora de masas madre durante el proceso de elaboración por el sistema de ‘refrescos’ sucesivos y de sus correspondientes masa panarias. Revista de Agroquímica y Tecnologia de Alimentos 29:478–491Google Scholar
  148. 148.
    Hamad SH, Dieng MC, Ehrmann MA, Vogel RF (1997) Characterization of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J Appl Microbiol 83:764–770CrossRefGoogle Scholar
  149. 149.
    Spicher G, Lönner C (1985) Die Mikroflora des Sauerteiges. XXI. Mitteilung: Die in Sauerteigen Schwedischer Bäckereien vorkommenden Lactobacillen. Z Lebensm Unters Forsch 181:9–13CrossRefGoogle Scholar
  150. 150.
    Lönner C, Welander T, Molin N, Dostálek M, Blickstad E (1986) The microflora in a sour dough started spontaneously on typical Swedish rye meal. Food Microbiol 3:3–12CrossRefGoogle Scholar
  151. 151.
    Gül H, Özçelik S, Sağdıç O, Certel M (2005) Sourdough bread production with lactobacilli and S. cerevisiae isolated from sourdoughs. Proc Biochem 40:691–697CrossRefGoogle Scholar
  152. 152.
    Gobbetti M, Corsetti A, Rossi J (1996) Lactobacillus sanfrancisco a key sourdough lactic acid bacterium: physiology, genetic and biotechnology. Adv Food Sci 18:167–175Google Scholar
  153. 153.
    Foschino R, Arrigoni C, Picozzi C, Mora D, Galli A (2001) Phenotypic and genotypic aspects of Lactobacillus sanfranciscensis strains isolated from sourdoughs in Italy. Food Microbiol 18:277–285CrossRefGoogle Scholar
  154. 154.
    Picozzi C, Bonacina G, Vigentini I, Foschino R (2001) Genetic diversity in Italian Lactobacillus sanfranciscensis strains assessed by multilocus sequence typing and pulsed-field gel electrophoresis analyses. Microbiology 156:2035–2045CrossRefGoogle Scholar
  155. 155.
    Scheirlinck I, Van der Meulen R, De Vuyst L, Vandamme P, Huys G (2009) Molecular source tracking of predominant lactic acid bacteria in traditional Belgian sourdoughs and their production environments. J Appl Microbiol 106:1081–1092CrossRefGoogle Scholar
  156. 156.
    Settanni L, Van Sinderen D, Rossi J, Corsetti A (2005) Rapid differentiation and in situ detection of 16 sourdough Lactobacillus species by multiplex PCR. Appl Environ Microbiol 71:3049–3059CrossRefGoogle Scholar
  157. 157.
    Settanni L, Valmorri S, van Sinderen D, Suzzi G, Paparella A, Corsetti A (2006) Combination of multiplex PCR and PCR-denaturing gradient gel electrophoresis for monitoring common sourdough-associated Lactobacillus species. Appl Environ Microbiol 72:3793–3796CrossRefGoogle Scholar
  158. 158.
    Di Cagno R, De Angelis M, Gallo G, Settanni L, Berloco MG, Siragusa S, Parente E, Corsetti A, Gobbetti M (2007) Genotypic and phenotypic diversity of Lactobacillus rossiae strains isolated from sourdough. J Appl Microbiol 103:821–835CrossRefGoogle Scholar
  159. 159.
    Groenewald WH, Van Reenen CA, Todorov SD, Du Toit M, Witthuhn R, Holzapfel WH, Dicks LMT (2006) Identification of lactic acid bacteria from vinegar flies based on phenotypic and genotypic characteristics. Am J Enol Viticult 57:519–525Google Scholar
  160. 160.
    Gänzle MG, Ehmann M, Hammes WP (1998) Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Appl Environ Microbiol 64:2616–2623Google Scholar
  161. 161.
    Picozzi C, D’Anchise F, Foschino R (2006) PCR detection of Lactobacillus sanfranciscensis in sourdough and Panettone baked product. Eur Food Res Technol 222:330–335CrossRefGoogle Scholar
  162. 162.
    Leroy F, De Winter T, Foulquié Moreno MR, De Vuyst L (2007) The bacteriocin producer Lactobacillus amylovorus DCE 471 is a competitive starter culture for type II sourdough fermentations. J Sci Food Agricult 87:1726–1736CrossRefGoogle Scholar
  163. 163.
    Hammes WP, Stolz P, Gänzle M (1996) Metabolism of lactobacilli in traditional sourdoughs. Adv Food Sci 18:176–184Google Scholar
  164. 164.
    Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16:57–69CrossRefGoogle Scholar
  165. 165.
    Gänzle MG, Vermeulen N, Vogel RF (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24:128–138CrossRefGoogle Scholar
  166. 166.
    Gänzle MG (2009) From gene to function: metabolic traits of starter cultures for improved quality of cereal foods. Int J Food Microbiol 134:29–36CrossRefGoogle Scholar
  167. 167.
    Dal Bello F, Walter J, Roos S, Jonsson H, Hertel C (2005) Inducible gene expression in Lactobacillus reuteri LTH5531 during type II sourdough fermentation. Appl Environ Microbiol 71:5873–5878CrossRefGoogle Scholar
  168. 168.
    Hüfner E, Britton RA, Roos S, Jonsson H, Hertel C (2008) Global transcriptional response of Lactobacillus reuteri to the sourdough environment. Syst Appl Microbiol 31:323–338CrossRefGoogle Scholar
  169. 169.
    Vrancken G, Rimaux T, De Vuyst L, Leroy F (2008) Kinetic analysis of growth and sugar consumption by Lactobacillus fermentum IMDO 130101 reveals adaptation to the acidic sourdough ecosystem. Int J Food Microbiol 128:55–66CrossRefGoogle Scholar
  170. 170.
    Vrancken G, Rimaux T, Weckx S, De Vuyst L, Leroy F (2009) Environmental pH determines citrulline and ornithine release through the arginine deiminase pathway in Lactobacillus fermentum IMDO 130101. Int J Food Microbiol 135:216–222CrossRefGoogle Scholar
  171. 171.
    Vrancken G, Rimaux T, Wouters D, Leroy F, De Vuyst L (2009) The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt. Food Microbiol 26:720–727CrossRefGoogle Scholar
  172. 172.
    Weckx S, Allemeersch J, Van der Meulen R, Vrancken G, Huys G, Vandamme P, Van Hummelen P, De Vuyst L (2011) Metatranscriptome analysis for insight into whole-ecosystem gene expression during spontaneous wheat and spelt sourdough fermentations. Appl Environ Microbiol 77:618–626CrossRefGoogle Scholar
  173. 173.
    Gänzle MG, Vogel R (2003) Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation. Int J Food Microbiol 80:31–45CrossRefGoogle Scholar
  174. 174.
    Pepe O, Blaiotta G, Anatasio M, Moschetti G, Ercolini D, Villani F (2004) Technological and molecular diversity of Lactobacillus plantarum strains isolated from naturally fermented sourdoughs. Syst Appl Microbiol 27:443–453CrossRefGoogle Scholar
  175. 175.
    Vrancken G, Rimaux T, Weckx S, Leroy F, De Vuyst L (2011) Influence of temperature and backslopping time on the microbiota of a type I propagated laboratory wheat sourdough fermentation. Appl Environ Microbiol 77:2716–2726CrossRefGoogle Scholar
  176. 176.
    Du Toit M, Dicks LMT, Holzapfel WH (2003) Identification of heterofermentative lactobacilli isolated from pig faeces by numerical analysis of total soluble cell protein and RAPD patterns. Lett Appl Microbiol 37:12–16CrossRefGoogle Scholar
  177. 177.
    Park SH, Itoh K (2005) Species-specific oligonucleotide probes for the detection and identification of Lactobacillus isolated from mouse faeces. J Appl Microbiol 99:51–57CrossRefGoogle Scholar
  178. 178.
    De Angelis M, Siragusa S, Berloco M, Caputo L, Settanni L, Alfonsi G, Amerio M, Grandi A, Ragni A, Gobbetti M (2006) Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res Microbiol 157:792–801CrossRefGoogle Scholar
  179. 179.
    Neysens P, De Vuyst L (2005) Kinetics and modelling of sourdough lactic acid bacteria. Trends Food Sci Technol 16:95–103CrossRefGoogle Scholar
  180. 180.
    Böcker G, Stolz P, Hammes WP (1995) Neue Erkentnisse zum Ökosystem Sauerteig und zur Physiologie der Sauerteig-typischen Stämme Lactobacillus sanfranciscensis und Lactobacillus pontis. Getreide Mehl und Broth 49:370–374Google Scholar
  181. 181.
    Vogel RF, Ehrmann MA, Gänzle MG (2002) Development and potential of starter lactobacilli resulting from exploration of the sourdough ecosystem. Antonie van Leeuwenhoek 81:631–638CrossRefGoogle Scholar
  182. 182.
    Ravyts F, De Vuyst L (2011) Prevalence and impact of single-strain starter cultures of lactic acid bacteria on metabolite formation in sourdough. Food Microbiol 28:1129–1139Google Scholar
  183. 183.
    Brandt MJ (2007) Sourdough products for convenient use in baking. Food Microbiol 24:161–164CrossRefGoogle Scholar
  184. 184.
    Carnevali P, Ciati R, Leporati A, Paese M (2007) Liquid sourdough fermentation: industrial application perspectives. Food Microbiol 24:150–154CrossRefGoogle Scholar
  185. 185.
    Meroth CB, Walter J, Hertel C, Brandt M, Hammes WP (2003) Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:475–482CrossRefGoogle Scholar
  186. 186.
    Decock P, Cappelle S (2005) Bread technology and sourdough technology. Trends Food Sci Technol 16:113–120CrossRefGoogle Scholar
  187. 187.
    Katina K, Heinio R-L, Autio K, Poutanen K (2006) Optimization of sourdough process for improved sensory profile and texture of wheat bread. Food Sci Technol 39:1189–1202Google Scholar
  188. 188.
    Messens W, Neysens P, Vansieleghem W, Vanderhoeven J, De Vuyst L (2002) Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations. Appl Environ Microbiol 68:1431–1435CrossRefGoogle Scholar
  189. 189.
    Brandt MJ, Hammes WP, Gänzle MG (2004) Effects of process parameters on growth and metabolism of Lactobacillus sanfranciscensis and Candida humilis during rye sourdough fermentation. Eur Food Res Technol 218:333–338CrossRefGoogle Scholar
  190. 190.
    Vogelmann SA, Hertel C (2011) Impact of ecological factors on the stability of microbial associations in sourdough fermentation. Food Microbiol 28:583–589CrossRefGoogle Scholar
  191. 191.
    Valmorri S, Mortensen HD, Jesperen L, Corsetti A, Gardini F, Suzzi G, Arneborg N (2008) Variations of internal pH in typical Italian sourdough yeasts during co-fermentation with lactobacilli. Food Sci Technol 41:1610–1615Google Scholar
  192. 192.
    Martínez-Anaya MA, Llin ML, Macias MP, Collar C (1994) Regulation of acetic acid production by homo- and heterofermentative lactobacilli in whole-wheat sourdoughs. Z Lebensm Unters Forsch 199:186–190CrossRefGoogle Scholar
  193. 193.
    Neysens P, Messens W, De Vuyst L (2003) Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471. Int J Food Microbiol 88:29–39CrossRefGoogle Scholar
  194. 194.
    Simonson L, Salovaara H, Korhola M (2003) Response of wheat sourdough parameters to temperature, NaCl and sucrose variations. Food Microbiol 20:193–199CrossRefGoogle Scholar
  195. 195.
    Gobbetti M (1998) The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci Technol 9:267–274CrossRefGoogle Scholar
  196. 196.
    Gobbetti M, Corsetti A, Rossi J (1994) The sourdough microflora – interactions between lactic acid bacteria and yeasts: metabolism of amino acids. World J Microbiol Biotechnol 10:275–279CrossRefGoogle Scholar
  197. 197.
    Deak T (2003) Detection, enumeration and isolation of yeasts. In: Boekhout T, Robert V (eds) Yeasts in food, 1st edn. Behr’s Verlag, Hamburg, pp 39–68CrossRefGoogle Scholar
  198. 198.
    Mian MA, Fleet GH, Hocking AD (1997) Effect of diluent type on viability of yeasts enumerated from foods or pure culture. Int J Food Microbiol 35:103–107CrossRefGoogle Scholar
  199. 199.
    Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts: a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–100CrossRefGoogle Scholar
  200. 200.
    Beuchat LR (1993) Selective media for detecting and enumerating foodborne yeasts. Int J Food Microbiol 19:1–14CrossRefGoogle Scholar
  201. 201.
    Arthur H, Watson K (1976) Thermal adaptation in yeasts: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol 128:56–68Google Scholar
  202. 202.
    de Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135CrossRefGoogle Scholar
  203. 203.
    Vogel RF, Böcker G, Stolz P, Ehrmann M, Fanta D, Ludwig W, Pot B, Kersters K, Schleifer KH, Hammes WP (1994) Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int J Food Microbiol 44:223–229Google Scholar
  204. 204.
    Vera A, Rigobello V, Demarigny Y (2009) Comparative study of culture media used for sourdough lactobacilli. Food Microbiol 26:728–733CrossRefGoogle Scholar
  205. 205.
    Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, vol 1-3, 5th edn. Elsevier, AmsterdamGoogle Scholar
  206. 206.
    Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371CrossRefGoogle Scholar
  207. 207.
    Cadez N, Poot GA, Raspor P, Smith MT (2003) Hanseniaspora meyeri sp. nov., Hanseniaspora clermontiae sp. nov., Hanseniaspora lachancei sp. nov. and Hanseniaspora opuntiae sp. nov., novel apiculate yeast species. Int J Syst Evol Microbiol 53:1671–1680CrossRefGoogle Scholar
  208. 208.
    Groenewald M, Daniel HM, Robert V, Poot GA, Smith MT (2008) Polyphasic ­re-examination of Debaryomyces hansenii strains and reinstatement of D. hansenii, D. fabryi and D. subglobosus. Persoonia 21:17–27CrossRefGoogle Scholar
  209. 209.
    Bergerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108CrossRefGoogle Scholar
  210. 210.
    Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecies ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinf 4:193–201Google Scholar
  211. 211.
    Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432CrossRefGoogle Scholar
  212. 212.
    Tsui CKM, Daniel HM, Robert V, Meyer W (2008) Re-examining the phylogeny of clinically relevant Candida species and allied genera based on multigene analyses. FEMS Yeast Res 8:651–659CrossRefGoogle Scholar
  213. 213.
    Vassart G, Georges M, Monsieur R, Brocas H, Lequarre AS, Christophe D (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235:683–684CrossRefGoogle Scholar
  214. 214.
    Landry CR, Townsend JP, Hartl DL, Cavalieri D (2006) Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol Ecol 15:575–591CrossRefGoogle Scholar
  215. 215.
    Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, Santos MAS (2008) Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9:524CrossRefGoogle Scholar
  216. 216.
    Ness F, Lavallée F, Dubourdieu D, Aigle M, Dulau L (1993) Identification of yeast strains using the polymerase chain reaction. J Sci Food Agric 62:89–94CrossRefGoogle Scholar
  217. 217.
    Legras J-L, Karst F (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol Lett 221:249–255CrossRefGoogle Scholar
  218. 218.
    Gancheva A, Pot B, Vanhonacker K, Hoste B, Kersters K (1999) A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species. Syst Appl Microbiol 22:573–585CrossRefGoogle Scholar
  219. 219.
    Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nature Rev Microbiol 8:74–82CrossRefGoogle Scholar
  220. 220.
    De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P (2011) Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol 34:20–29CrossRefGoogle Scholar
  221. 221.
    Grimont F, Grimont PAD (1986) Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol 137B:165–175CrossRefGoogle Scholar
  222. 222.
    Janssen P, Coopman R, Huys G, Swings J, Bleeker M, Vos P, Zabeau M, Kersters K (1996) Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142:1881–1893CrossRefGoogle Scholar
  223. 223.
    Settanni L, Massitti O, Van Sinderen D, Corsetti A (2005) In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. J Appl Microbiol 99:670–681CrossRefGoogle Scholar
  224. 224.
    Olive DM, Bean P (1999) Principles and applications of methods for DNA-beased typing of microbial organisms. J Clin Microbiol 37:1661–1669Google Scholar
  225. 225.
    Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40Google Scholar
  226. 226.
    Bounaix M-S, Robert H, Gabriel V, Morel S, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C (2010) Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextran sucrase expression. FEMS Microbiol Lett 311:18–26CrossRefGoogle Scholar
  227. 227.
    Bounaix M-S, Gabriel V, Robert H, Morel S, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C (2010) Characterization of glucan-producing Leuconostoc strains isolated from sourdough. Int J Food Microbiol 144:1–9CrossRefGoogle Scholar
  228. 228.
    Stackebrandt E, Goebel BM (1994) A place for DNA-DNA reassociation and 16S ribosomal RNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  229. 229.
    Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150CrossRefGoogle Scholar
  230. 230.
    Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kampfer P, Maiden MCJ, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047CrossRefGoogle Scholar
  231. 231.
    Konstantinidis KT, Ramette A, Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72:7286–7293CrossRefGoogle Scholar
  232. 232.
    De Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I, Vancanneyt M, De Vuyst L, Franz CMAP, Vandamme P (2007) Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 57:2952–2959CrossRefGoogle Scholar
  233. 233.
    De Bruyne K, Franz CMAP, Vancanneyt M, Schillinger U, Mozzi F, de Valdez GF, De Vuyst L, Vandamme P (2008) Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. Int J Syst Evol Microbiol 58:2909–2916CrossRefGoogle Scholar
  234. 234.
    Achtman M (2008) Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Ann Rev Microbiol 62:53–70CrossRefGoogle Scholar
  235. 235.
    Cai H, Rodriguez BT, Zhang W, Broadbent JR, Steele JL (2007) Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. Microbiology 153:2655–2665CrossRefGoogle Scholar
  236. 236.
    Diancourt L, Passet V, Chervaux C, Garault P, Smokvina T, Brisse S (2007) Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Appl Environ Microbiol 73:6601–6611CrossRefGoogle Scholar
  237. 237.
    de las Rivas B, Marcobal A, Muñoz R (2006) Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology 152:85–93CrossRefGoogle Scholar
  238. 238.
    Raftis EJ, Salvetti E, Torriani S, Felis GE, O’Toole PW (2011) Genomic diversity of Lactobacillus salivarius. Appl Environ Microbiol 77:954–965CrossRefGoogle Scholar
  239. 239.
    Ehrmann M, Ludwig W, Schleifer KH (1994) Reverse dot blot hybridization: a useful method for the direct identification of lactic acid bacteria in fermented food. FEMS Microbiol Lett 117:143–150CrossRefGoogle Scholar
  240. 240.
    Müller MRA, Ehrmann MA, Vogel RF (2000) Multiplex PCR for the detection of Lactobacillus pontis and two related species in a sourdough fermentation. Appl Environ Microbiol 66:2113–2116CrossRefGoogle Scholar
  241. 241.
    Valcheva R, Kabadjova P, Rachman C, Ivanova I, Onno B, Prevost H, Dousset X (2007) A rapid PCR procedure for the specific identification of Lactobacillus sanfranciscensis, based on the 16S-23S intergenic spacer regions. J Appl Microbiol 102:290–302CrossRefGoogle Scholar
  242. 242.
    Zapparoli G, Torriani S (1997) Rapid identification and detection of Lactobacillus sanfrancisco in sourdough by species-specific PCR with 16S rRNA-targeted primers. Syst Appl Microbiol 20:640–644CrossRefGoogle Scholar
  243. 243.
    Levin RE (2004) The application of real-time PCR to food and agricultural systems: a review. Food Biotechnol 18:97–133CrossRefGoogle Scholar
  244. 244.
    Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Meth 56:297–314CrossRefGoogle Scholar
  245. 245.
    Palomba S, Blaiotta G, Ventorino V, Saccone A, Pepe O (2010) Microbial characterization of sourdough for sweet baked products in the Campania region (southern Italy) by a polyphasic approach. Ann Microbiol. doi: 10.1007/s13213-010-0140-2
  246. 246.
    Reale A, Di Renzo T, Succi M, Tremonte P, Coppola R, Sorrentino E (2011) Identification of lactobacilli isolated in traditional ripe wheat sourdoughs by using molecular methods. World J Microbiol Biotechnol 27:237–244CrossRefGoogle Scholar
  247. 247.
    Rantsiou K, Comi G, Cocolin L (2004) The rpoB gene as a target for PCR-DGGE analysis to follow lactic acid bacterial population dynamics during food fermentations. Food Microbiol 21:481–487CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.BCCM/LMG Bacteria Collection and Laboratory for Microbiology, Department of Biochemistry and Microbiology, Faculty of SciencesGhent UniversityGhentBelgium
  2. 2.Mycothèque de l’Université catholique de Louvain (MUCL), Earth and Life Institute, Applied Microbiology, MycologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bio-engineering SciencesVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations