Skip to main content

Abstract

Leptospirosis is a major public health problem and one of the most widespread zoonotic diseases in the world. The disease is caused by the pathogenic spirochete Leptospira, which induces a wide range of clinical manifestations ranging from mild flu-like illness to severe Weil’s disease characterized by multi-organ failure leading to death. In spite of the fact that this disease has been studied for decades, little is understood regarding mechanisms of pathogenesis, which has hampered the development of novel therapeutic and prophylactic interventions. Recently, development of tools for genetic manipulation as well as publication of genome sequences from both pathogenic and saprophytic leptospires have revealed novel insights into the biology and pathogenesis of this important agent. We discuss recent advances in our understanding of the mechanisms underlying leptospiral invasion and persistence, and factors contributing to evasion of host immunity. The progress made in understanding host responses, particularly the role of innate immune receptors (Toll-like receptors {TLRs}) and cell mediated immune responses are discussed. The potential of Leptospira spp. virulence factors (outer membrane proteins and others) for development of subunit vaccines and the role of adjuvants/immunomoulators in their success are also discussed. Finally, we conclude by highlighting future work that needs to be done in order to better understand the pathogenesis of leptospirosis, thereby paving the way for the development of improved diagnostics and more effective vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler B, de la Pena Moctezuma A (2010) Leptospira and leptospirosis. Vet Microbiol 140(3–4):287–296

    PubMed  CAS  Google Scholar 

  • Adler B, Faine S (1977) Host immunological mechanisms in the resistance of mice to leptospiral infections. Infect Immun 17(1):67–72

    PubMed  CAS  Google Scholar 

  • Adler B, Faine S (1978) The antibodies involved in the human immune response to leptospiral infection. J Med Microbiol 11(4):387–400

    PubMed  CAS  Google Scholar 

  • Ahmed N, Devi SM, Valverde Mde L, Vijayachari P, Machangu RS, Ellis WA, Hartskeerl RA (2006) Multilocus sequence typing method for identification and genotypic classification of pathogenic Leptospira species. Ann Clin Microbiol Antimicrob 5:28

    PubMed  Google Scholar 

  • Artiushin S, Timoney JF, Nally J, Verma A (2004) Host-inducible immunogenic sphingomyelinase-like protein, Lk73.5, of Leptospira interrogans. Infect Immun 72(2):742–749

    PubMed  CAS  Google Scholar 

  • Athanazio DA, Silva EF, Santos CS, Rocha GM, Vannier-Santos MA, McBride AJ, Ko AI, Reis MG (2008) Rattus norvegicus as a model for persistent renal colonization by pathogenic Leptospira interrogans. Acta Trop 105(2):176–180

    PubMed  Google Scholar 

  • Atzingen MV, Barbosa AS, De Brito T, Vasconcellos SA, de Morais ZM, Lima DM, Abreu PA, Nascimento AL (2008) Lsa21, a novel leptospiral protein binding adhesive matrix molecules and present during human infection. BMC Microbiol 8:70

    PubMed  Google Scholar 

  • Bajani MD, Ashford DA, Bragg SL, Woods CW, Aye T, Spiegel RA, Plikaytis BD, Perkins BA, Phelan M, Levett PN, Weyant RS (2003) Evaluation of four commercially available rapid serologic tests for diagnosis of leptospirosis. J Clin Microbiol 41(2):803–809

    PubMed  CAS  Google Scholar 

  • Barbosa AS, Abreu PA, Neves FO, Atzingen MV, Watanabe MM, Vieira ML, Morais ZM, Vasconcellos SA, Nascimento AL (2006) A newly identified leptospiral adhesin mediates attachment to laminin. Infect Immun 74(11):6356–6364

    PubMed  CAS  Google Scholar 

  • Barbosa AS, Abreu PA, Vasconcellos SA, Morais ZM, Goncales AP, Silva AS, Daha MR, Isaac L (2009) Immune evasion of leptospira species by acquisition of human complement regulator C4BP. Infect Immun 77(3):1137–1143

    PubMed  CAS  Google Scholar 

  • Barbosa AS, Monaris D, Silva LB, Morais ZM, Vasconcellos SA, Cianciarullo AM, Isaac L, Abreu PA (2010) Functional characterization of LcpA, a surface-exposed protein of Leptospira spp. that binds the human complement regulator C4BP. Infect Immun 78(7):3207–3216

    PubMed  CAS  Google Scholar 

  • Barocchi MA, Ko AI, Reis MG, McDonald KL, Riley LW (2002) Rapid translocation of polarized MDCK cell monolayers by Leptospira interrogans, an invasive but nonintracellular pathogen. Infect Immun 70(12):6926–6932

    PubMed  CAS  Google Scholar 

  • Bauby H, Saint Girons I, Picardeau M (2003) Construction and complementation of the first auxotrophic mutant in the spirochaete Leptospira meyeri. Microbiology 149(Pt 3):689–693

    PubMed  CAS  Google Scholar 

  • Bernheimer AW, Bey RF (1986) Copurification of Leptospira interrogans serovar pomona hemolysin and sphingomyelinase C. Infect Immun 54(1):262–264

    PubMed  CAS  Google Scholar 

  • Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, Lovett MA, Levett PN, Gilman RH, Willig MR, Gotuzzo E, Vinetz JM (2003) Peru-United States Leptospirosis Consortium: Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3(12):757–771

    PubMed  Google Scholar 

  • Bolin CA, Alt DP (2001) Use of a monovalent leptospiral vaccine to prevent renal colonization and urinary shedding in cattle exposed to Leptospira borgpetersenii serovar hardjo. Am J Vet Res 62(7):995–1000

    PubMed  CAS  Google Scholar 

  • Bonneville M, O’Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10(7):467–478

    PubMed  CAS  Google Scholar 

  • Boonyod D, Poovorawan Y, Bhattarakosol P, Chirathaworn C (2005) LipL32, an outer membrane protein of Leptospira, as an antigen in a dipstick assay for diagnosis of leptospirosis. Asian Pac J Allergy Immunol 23(2–3):133–141

    PubMed  CAS  Google Scholar 

  • Bourhy P, Louvel H, Saint Girons I, Picardeau M (2005) Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J Bacteriol 187(9):3255–3258

    PubMed  CAS  Google Scholar 

  • Branger C, Sonrier C, Chatrenet B, Klonjkowski B, Ruvoen-Clouet N, Aubert A, Andre-Fontaine G, Eloit M (2001) Identification of the hemolysis-associated protein 1 as a cross-protective immunogen of Leptospira interrogans by adenovirus-mediated vaccination. Infect Immun 69(11):6831–6838

    PubMed  CAS  Google Scholar 

  • Brown RA, Blumerman S, Gay C, Bolin C, Duby R, Baldwin CL (2003) Comparison of three different leptospiral vaccines for induction of a type 1 immune response to Leptospira borgpetersenii serovar Hardjo. Vaccine 21(27–30):4448–4458

    PubMed  CAS  Google Scholar 

  • Bulach DM, Zuerner RL, Wilson P, Seemann T, McGrath A, Cullen PA, Davis J, Johnson M, Kuczek E, Alt DP, Peterson-Burch B, Coppel RL, Rood JI, Davies JK, Adler B (2006) Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 103(39):14560–14565

    PubMed  Google Scholar 

  • Burnette WN (1991) Recombinant subunit vaccines. Curr Opin Biotechnol 2(6):882–892

    PubMed  CAS  Google Scholar 

  • Burth P, Younes-Ibrahim M, Santos MC, Castro-Faria Neto HC, De Castro Faria MV (2005) Role of nonesterified unsaturated fatty acids in the pathophysiological processes of leptospiral infection. J Infect Dis 191(1):51–57

    PubMed  CAS  Google Scholar 

  • Busch DH, Jassoy C, Brinckmann U, Girschick H, Huppertz HI (1996) Detection of Borrelia burgdorferi-specific CD8+ cytotoxic T cells in patients with Lyme arthritis. J Immunol 157(8):3534–3541

    PubMed  CAS  Google Scholar 

  • Carvalho E, Barbosa AS, Gomez RM, Oliveira ML, Romero EC, Goncales AP, Morais ZM, Vasconcellos SA, Ho PL (2010) Evaluation of the expression and protective potential of Leptospiral sphingomyelinases. Curr Microbiol 60(2):134–142

    PubMed  CAS  Google Scholar 

  • Castiblanco-Valencia MM, Fraga TR, Silva LB, Monaris D, Abreu PA, Strobel S, Jozsi M, Isaac L, Barbosa AS (2012) Leptospiral immunoglobulin-like proteins interact with human complement regulators factor H, FHL-1, FHR-1, and C4BP. J Infect Dis 205(6):995–1004

    PubMed  CAS  Google Scholar 

  • Chang YF, Chen CS, Palaniappan RU, He H, McDonough SP, Barr SC, Yan W, Faisal SM, Pan MJ, Chang CF (2007) Immunogenicity of the recombinant leptospiral putative outer membrane proteins as vaccine candidates. Vaccine 25(48):8190–8197

    PubMed  CAS  Google Scholar 

  • Chassin C, Picardeau M, Goujon JM, Bourhy P, Quellard N, Darche S (2009) Badell E, d’Andon MF, Winter N, Lacroix-Lamande S, Buzoni-Gatel D, Vandewalle A, Werts C: TLR4- and TLR2-mediated B cell responses control the clearance of the bacterial pathogen, Leptospira interrogans. J Immunol 183(4):2669–2677

    PubMed  CAS  Google Scholar 

  • Choy HA, Kelley MM, Chen TL, Moller AK, Matsunaga J, Haake DA (2007) Physiological osmotic induction of Leptospira interrogans adhesion: LigA and LigB bind extracellular matrix proteins and fibrinogen. Infect Immun 75(5):2441–2450

    PubMed  CAS  Google Scholar 

  • Cinco M, Domenis R, Perticarari S, Presani G, Marangoni A, Blasi E (2006) Interaction of leptospires with murine microglial cells. New Microbiol 29(3):193–199

    PubMed  Google Scholar 

  • Croda J, Ramos JG, Matsunaga J, Queiroz A, Homma A, Riley LW, Haake DA, Reis MG, Ko AI (2007) Leptospira immunoglobulin-like proteins as a serodiagnostic marker for acute leptospirosis. J Clin Microbiol 45(5):1528–1534

    PubMed  CAS  Google Scholar 

  • Croda J, Figueira CP, Wunder EA Jr (2008) Santos CS, Reis MG, Ko AI, Picardeau M: Targeted mutagenesis in pathogenic Leptospira species: disruption of the LigB gene does not affect virulence in animal models of leptospirosis. Infect Immun 76(12):5826–5833

    PubMed  CAS  Google Scholar 

  • Croda J, Neto AN, Brasil RA, Pagliari C, Nicodemo AC, Duarte MI (2010) Leptospirosis pulmonary haemorrhage syndrome is associated with linear deposition of immunoglobulin and complement on the alveolar surface. Clin Microbiol Infect 16(6):593–599

    PubMed  CAS  Google Scholar 

  • Cullen PA, Cordwell SJ, Bulach DM, Haake DA, Adler B (2002) Global analysis of outer ­membrane proteins from Leptospira interrogans serovar Lai. Infect Immun 70(5):2311–2318

    PubMed  CAS  Google Scholar 

  • Davis JM, Haake DA, Ramakrishnan L (2009) Leptospira interrogans stably infects zebrafish embryos, altering phagocyte behavior and homing to specific tissues. PLoS Negl Trop Dis 3(6):e463

    PubMed  Google Scholar 

  • Ellis WA, Hovind-Hougen K, Moller S, Birch-Andresen A (1983) Morphological changes upon subculturing of freshly isolated strains of Leptospira interrogans serovar hardjo. Zentralbl Bakteriol Mikrobiol Hyg A 255(2–3):323–335

    PubMed  CAS  Google Scholar 

  • Faine S (1957) Virulence in leptospira. II. The growth in vivo of virulent Leptospira icterohaemorrhagiae. Br J Exp Pathol 38(1):8–14

    PubMed  CAS  Google Scholar 

  • Faisal SM, Yan W, Chen CS, Palaniappan RU, McDonough SP, Chang YF (2008) Evaluation of protective immunity of Leptospira immunoglobulin like protein A (LigA) DNA vaccine against challenge in hamsters. Vaccine 26(2):277–287

    PubMed  CAS  Google Scholar 

  • Faisal SM, Yan W, McDonough SP, Chang YF (2009a) Leptospira immunoglobulin-like protein A variable region (LigAvar) incorporated in liposomes and PLGA microspheres produces a robust immune response correlating to protective immunity. Vaccine 27(3):378–387

    PubMed  CAS  Google Scholar 

  • Faisal SM, Yan W, McDonough SP, Chang CF, Pan MJ, Chang YF (2009b) Leptosome-entrapped leptospiral antigens conferred significant higher levels of protection than those entrapped with PC-liposomes in a hamster model. Vaccine 27(47):6537–6545

    PubMed  CAS  Google Scholar 

  • Faisal SM, Yan W, McDonough SP, Mohammed HO, Divers TJ, Chang YF (2009c) Immune response and prophylactic efficacy of smegmosomes in a hamster model of leptospirosis. Vaccine 27(44):6129–6136

    PubMed  CAS  Google Scholar 

  • Feng CY, Li QT, Zhang XY, Dong K, Hu BY, Guo XK (2009) Immune strategies using single-component LipL32 and multi-component recombinant LipL32-41-OmpL1 vaccines against leptospira. Braz J Med Biol Res 42(9):796–803

    PubMed  CAS  Google Scholar 

  • Gamberini M, Gomez RM, Atzingen MV, Martins EA, Vasconcellos SA, Romero EC, Leite LC, Ho PL, Nascimento AL (2005) Whole-genome analysis of Leptospira interrogans to identify potential vaccine candidates against leptospirosis. FEMS Microbiol Lett 244(2):305–313

    PubMed  CAS  Google Scholar 

  • Girons IS, Bourhy P, Ottone C, Picardeau M, Yelton D, Hendrix RW, Glaser P, Charon N (2000) The LE1 bacteriophage replicates as a plasmid within Leptospira biflexa: construction of an L. biflexa-Escherichia coli shuttle vector. J Bacteriol 182(20):5700–5705

    PubMed  CAS  Google Scholar 

  • Gouveia EL, Metcalfe J, de Carvalho AL, Aires TS, Villasboas-Bisneto JC, Queirroz A, Santos AC, Salgado K, Reis MG, Ko AI (2008) Leptospirosis-associated severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis 14(3):505–508

    PubMed  Google Scholar 

  • Guegan R, Camadro JM, Saint Girons I, Picardeau M (2003) Leptospira spp. possess a complete haem biosynthetic pathway and are able to use exogenous haem sources. Mol Microbiol 49(3):745–754

    PubMed  CAS  Google Scholar 

  • Guo YJ, Wang KY, Sun SH (2010) Identification of an HLA-A*0201-restricted CD8(+) T-cell epitope encoded within Leptospiral immunoglobulin-like protein A. Microbes Infect 12(5):364–373

    PubMed  CAS  Google Scholar 

  • Haake DA (2006) Hamster model of leptospirosis. Curr Protoc Microbiol, Chapter 12:Unit 12E.2.

    Google Scholar 

  • Haake DA, Mazel MK, McCoy AM, Milward F, Chao G, Matsunaga J, Wagar EA (1999) Leptospiral outer membrane proteins OmpL1 and LipL41 exhibit synergistic immunoprotection. Infect Immun 67(12):6572–6582

    PubMed  CAS  Google Scholar 

  • Haake DA, Chao G, Zuerner RL, Barnett JK, Barnett D, Mazel M, Matsunaga J, Levett PN, Bolin CA (2000) The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect Immun 68(4):2276–2285

    PubMed  CAS  Google Scholar 

  • Habarta A, Abreu PA, Olivera N, Hauk P, Cedola MT, Ferrer MF, Ho PL, Gomez RM (2010) Increased Immunogenicity to LipL32 of Leptospira interrogans when Expressed as a Fusion Protein with the Cholera Toxin B Subunit. Curr Microbiol 62(2):526–531

    PubMed  Google Scholar 

  • Hauk P, Macedo F, Romero EC, Vasconcellos SA, de Morais ZM, Barbosa AS, Ho PL (2008) In LipL32, the major leptospiral lipoprotein, the C terminus is the primary immunogenic domain and mediates interaction with collagen IV and plasma fibronectin. Infect Immun 76(6):2642–2650

    PubMed  CAS  Google Scholar 

  • He P, Sheng YY, Shi YZ, Jiang XG, Qin JH, Zhang ZM, Zhao GP, Guo XK (2007) Genetic diversity among major endemic strains of Leptospira interrogans in China. BMC Genomics 8:204

    PubMed  Google Scholar 

  • Hoke DE, Egan S, Cullen PA, Adler B (2008) LipL32 is an extracellular matrix-interacting protein of Leptospira spp. and Pseudoalteromonas tunicata. Infect Immun 76(5):2063–2069

    PubMed  CAS  Google Scholar 

  • Hospenthal DR, Murray CK (2003) In vitro susceptibilities of seven Leptospira species to traditional and newer antibiotics. Antimicrob Agents Chemother 47(8):2646–2648

    PubMed  CAS  Google Scholar 

  • Ito T, Yanagawa R (1987) Leptospiral attachment to extracellular matrix of mouse fibroblast (L929) cells. Vet Microbiol 15(1–2):89–96

    PubMed  CAS  Google Scholar 

  • Jost BH, Adler B, Vinh T, Faine S (1986) A monoclonal antibody reacting with a determinant on leptospiral lipopolysaccharide protects guinea pigs against leptospirosis. J Med Microbiol 22(3):269–275

    PubMed  CAS  Google Scholar 

  • Kariv R, Klempfner R, Barnea A, Sidi Y, Schwartz E (2001) The changing epidemiology of leptospirosis in Israel. Emerg Infect Dis 7(6):990–992

    PubMed  CAS  Google Scholar 

  • Katz AR, Ansdell VE, Effler PV, Middleton CR, Sasaki DM (2001) Assessment of the clinical presentation and treatment of 353 cases of laboratory-confirmed leptospirosis in Hawaii, 1974–1998. Clin Infect Dis 33(11):1834–1841

    PubMed  CAS  Google Scholar 

  • Kee SH, Kim IS, Choi MS, Chang WH (1994) Detection of leptospiral DNA by PCR. J Clin Microbiol 32(4):1035–1039

    PubMed  CAS  Google Scholar 

  • Klimpel GR, Matthias MA, Vinetz JM (2003) Leptospira interrogans activation of human peripheral blood mononuclear cells: preferential expansion of TCR gamma delta  +  T cells vs TCR alpha beta  +  T cells. J Immunol 171(3):1447–1455

    PubMed  CAS  Google Scholar 

  • Ko AI, Galvao Reis M, Ribeiro Dourado CM, Johnson WD Jr, Riley LW (1999) Urban epidemic of severe leptospirosis in Brazil. Salvador Leptospirosis Study Group. Lancet 354(9181):820–825

    PubMed  CAS  Google Scholar 

  • Ko AI, Goarant C, Picardeau M (2009) Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7(10):736–747

    PubMed  CAS  Google Scholar 

  • Koizumi N, Watanabe H (2003) Molecular cloning and characterization of a novel leptospiral lipoprotein with OmpA domain. FEMS Microbiol Lett 226(2):215–219

    PubMed  CAS  Google Scholar 

  • Koizumi N, Watanabe H (2004) Leptospiral immunoglobulin-like proteins elicit protective immunity. Vaccine 22(11–12):1545–1552

    PubMed  CAS  Google Scholar 

  • Kositanont U, Rugsasuk S, Leelaporn A, Phulsuksombati D, Tantitanawat S, Naigowit P (2007) Detection and differentiation between pathogenic and saprophytic Leptospira spp. by multiplex polymerase chain reaction. Diagn Microbiol Infect Dis 57(2):117–122

    PubMed  CAS  Google Scholar 

  • Leblebicioglu H, Sunbul M, Esen S, Eroglu C (2003) Jarisch-Herxheimer reaction in leptospirosis. Eur J Clin Microbiol Infect Dis 22(10):639, author reply 640

    PubMed  CAS  Google Scholar 

  • Lee SH, Kim KA, Park YG, Seong IW, Kim MJ, Lee YJ (2000) Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai. Gene 254(1–2):19–28

    PubMed  CAS  Google Scholar 

  • Lee SH, Kim S, Park SC, Kim MJ (2002) Cytotoxic activities of Leptospira interrogans hemolysin SphH as a pore-forming protein on mammalian cells. Infect Immun 70(1):315–322

    PubMed  CAS  Google Scholar 

  • Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14(2):296–326

    PubMed  CAS  Google Scholar 

  • Li S, Ojcius DM, Liao S, Li L, Xue F, Dong H, Yan J (2010) Replication or death: distinct fates of pathogenic Leptospira strain Lai within macrophages of human or mouse origin. Innate Immun 16(2):80–92

    PubMed  Google Scholar 

  • Liao S, Sun A, Ojcius DM, Wu S, Zhao J, Yan J (2009) Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC Microbiol 9:253

    PubMed  Google Scholar 

  • Lin YP, Chang YF (2008) The C-terminal variable domain of LigB from Leptospira mediates binding to fibronectin. J Vet Sci 9(2):133–144

    PubMed  Google Scholar 

  • Lin YP, Raman R, Sharma Y, Chang YF (2008) Calcium binds to leptospiral immunoglobulin-like protein, LigB, and modulates fibronectin binding. J Biol Chem 283(37):25140–25149

    PubMed  CAS  Google Scholar 

  • Lin YP, Greenwood A, Nicholson LK, Sharma Y, McDonough SP, Chang YF (2009a) Fibronectin binds to and induces conformational change in a disordered region of leptospiral immunoglobulin-like protein B. J Biol Chem 284(35):23547–23557

    PubMed  CAS  Google Scholar 

  • Lin YP, Greenwood A, Yan W, Nicholson LK, Sharma Y, McDonough SP, Chang YF (2009b) A novel fibronectin type III module binding motif identified on C-terminus of Leptospira immunoglobulin-like protein, LigB. Biochem Biophys Res Commun 389(1):57–62

    PubMed  CAS  Google Scholar 

  • Lin YP, Lee DW, McDonough SP, Nicholson LK, Sharma Y, Chang YF (2009c) Repeated domains of leptospira immunoglobulin-like proteins interact with elastin and tropoelastin. J Biol Chem 284(29):19380–19391

    PubMed  CAS  Google Scholar 

  • Lin YP, McDonough SP, Sharma Y, Chang YF (2010) The terminal immunoglobulin-like repeats of LigA and LigB of Leptospira enhance their binding to gelatin binding domain of fibronectin and host cells. PLoS One 5(6):e11301

    PubMed  Google Scholar 

  • Lin YP, McDonough SP, Sharma Y, Chang YF (2011) Leptospira immunoglobulin-like protein B (LigB) binding to the C-terminal fibrinogen alphaC domain inhibits fibrin clot formation, platelet adhesion and aggregation. Mol Microbiol 79(4):1063–1076

    PubMed  CAS  Google Scholar 

  • Lingappa J, Kuffner T, Tappero J, Whitworth W, Mize A, Kaiser R, McNicholl J (2004) HLA-DQ6 and ingestion of contaminated water: possible gene-environment interaction in an outbreak of Leptospirosis. Genes Immun 5(3):197–202

    PubMed  CAS  Google Scholar 

  • Liu Y, Zheng W, Li L, Mao Y, Yan J (2007) Pathogenesis of leptospirosis: interaction of Leptospira interrogans with in vitro cultured mammalian cells. Med Microbiol Immunol 196(4):233–239

    PubMed  Google Scholar 

  • Lo M, Bulach DM, Powell DR, Haake DA, Matsunaga J, Paustian ML, Zuerner RL, Adler B (2006) Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays. Infect Immun 74(10):5848–5859

    PubMed  CAS  Google Scholar 

  • Longhi MT, Oliveira TR, Romero EC, Goncales AP, de Morais ZM, Vasconcellos SA, Nascimento AL (2009) A newly identified protein of Leptospira interrogans mediates binding to laminin. J Med Microbiol 58(Pt 10):1275–1282

    PubMed  CAS  Google Scholar 

  • Louvel H, Picardeau M (2007) Genetic manipulation of Leptospira biflexa. Curr Protoc Microbiol, Chapter 12:Unit 12E.4.

    Google Scholar 

  • Louvel H, Saint Girons I, Picardeau M (2005) Isolation and characterization of FecA- and FeoB-mediated iron acquisition systems of the spirochete Leptospira biflexa by random insertional mutagenesis. J Bacteriol 187(9):3249–3254

    PubMed  CAS  Google Scholar 

  • Louvel H, Bommezzadri S, Zidane N, Boursaux-Eude C, Creno S, Magnier A, Rouy Z, Medigue C, Saint Girons C, Bouchier I, Picardeau M (2006) Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp. J Bacteriol 188(22):7893–7904

    PubMed  CAS  Google Scholar 

  • Mader U, Nicolas P, Richard H, Bessieres P, Aymerich S (2010) Comprehensive identification and quantification of microbial transcriptomes by genome-wide unbiased methods. Curr Opin Biotechnol 22(1):32–41

    PubMed  Google Scholar 

  • Mariya R, Chaudhary P, Kumar AA, Thangapandian E, Amutha R, Srivastava SK (2006) Evaluation of a recombinant LipL41 antigen of Leptospira interrogans serovar canicola in ELISA for serodiagnosis of bovine leptospirosis. Comp Immunol Microbiol Infect Dis 29(5–6):269–277

    PubMed  CAS  Google Scholar 

  • Matsunaga J, Barocchi MA, Croda J, Young TA, Sanchez Y, Siqueira I, Bolin CA, Reis MG, Riley LW, Haake DA, Ko AI (2003) Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily. Mol Microbiol 49(4):929–945

    PubMed  CAS  Google Scholar 

  • Matsunaga J, Lo M, Bulach DM, Zuerner RL, Adler B, Haake DA (2007) Response of Leptospira interrogans to physiologic osmolarity: relevance in signaling the environment-to-host transition. Infect Immun 75(6):2864–2874

    PubMed  CAS  Google Scholar 

  • McBride AJ, Athanazio DA, Reis MG, Ko AI (2005) Leptospirosis. Curr Opin Infect Dis 18(5):376–386

    PubMed  Google Scholar 

  • McBride AJ, Cerqueira GM, Suchard MA, Moreira AN, Zuerner RL, Reis MG, Haake DA, Ko AI, Dellagostin OA (2009) Genetic diversity of the Leptospiral immunoglobulin-like (Lig) genes in pathogenic Leptospira spp. Infect Genet Evol 9(2):196–205

    PubMed  CAS  Google Scholar 

  • McCurry J (2009) Philippines struggles to recover from typhoons. Lancet 374(9700):1489

    PubMed  Google Scholar 

  • Meri T, Murgia R, Stefanel P, Meri S, Cinco M (2005) Regulation of complement activation at the C3-level by serum resistant leptospires. Microb Pathog 39(4):139–147

    PubMed  CAS  Google Scholar 

  • Merien F, Perolat P, Mancel E, Persan D, Baranton G (1993) Detection of Leptospira DNA by polymerase chain reaction in aqueous humor of a patient with unilateral uveitis. J Infect Dis 168(5):1335–1336

    PubMed  CAS  Google Scholar 

  • Merien F, Baranton G, Perolat P (1997) Invasion of Vero cells and induction of apoptosis in macrophages by pathogenic Leptospira interrogans are correlated with virulence. Infect Immun 65(2):729–738

    PubMed  CAS  Google Scholar 

  • Merien F, Truccolo J, Baranton G, Perolat P (2000) Identification of a 36-kDa fibronectin-binding protein expressed by a virulent variant of Leptospira interrogans serovar icterohaemorrhagiae. FEMS Microbiol Lett 185(1):17–22

    PubMed  CAS  Google Scholar 

  • Minette HP, Shaffer MF (1968) Experimental leptospirosis in monkeys. Am J Trop Med Hyg 17(2):202–212

    PubMed  CAS  Google Scholar 

  • Monahan AM, Callanan JJ, Nally JE (2008) Proteomic analysis of Leptospira interrogans shed in urine of chronically infected hosts. Infect Immun 76(11):4952–4958

    PubMed  CAS  Google Scholar 

  • Murray GL, Srikram A, Hoke DE, Wunder EA Jr, Henry R, Lo M, Zhang K, Sermswan RW, Ko AI, Adler B (2009a) Major surface protein LipL32 is not required for either acute or chronic infection with Leptospira interrogans. Infect Immun 77(3):952–958

    PubMed  CAS  Google Scholar 

  • Murray GL, Morel V, Cerqueira GM, Croda J, Srikram A, Henry R, Ko AI, Dellagostin OA, Bulach DM, Sermswan RW, Adler B, Picardeau M (2009b) Genome-wide transposon mutagenesis in pathogenic Leptospira species. Infect Immun 77(2):810–816

    PubMed  CAS  Google Scholar 

  • Murray GL, Srikram A, Henry R, Puapairoj A, Sermswan RW, Adler B (2009c) Leptospira interrogans requires heme oxygenase for disease pathogenesis. Microbes Infect 11(2):311–314

    PubMed  CAS  Google Scholar 

  • Murray GL, Srikram A, Henry R, Hartskeerl RA, Sermswan RW, Adler B (2010) Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence. Mol Microbiol 78(3):701–709

    PubMed  CAS  Google Scholar 

  • Nahori MA, Fournie-Amazouz E, Que-Gewirth NS, Balloy V, Chignard M, Raetz CR, Saint Girons I, Werts C (2005) Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol 175(9):6022–6031

    PubMed  CAS  Google Scholar 

  • Naiman BM, Alt D, Bolin CA, Zuerner R, Baldwin CL (2001) Protective killed Leptospira borgpetersenii vaccine induces potent Th1 immunity comprising responses by CD4 and gammadelta T lymphocytes. Infect Immun 69(12):7550–7558

    PubMed  CAS  Google Scholar 

  • Naiman BM, Blumerman S, Alt D, Bolin CA, Brown R, Zuerner R, Baldwin CL (2002) Evaluation of type 1 immune response in naive and vaccinated animals following challenge with Leptospira borgpetersenii serovar Hardjo: involvement of WC1(+) gammadelta and CD4 T cells. Infect Immun 70(11):6147–6157

    PubMed  CAS  Google Scholar 

  • Nally JE, Chantranuwat C, Wu XY, Fishbein MC, Pereira MM, Da Silva JJ, Blanco DR, Lovett MA (2004) Alveolar septal deposition of immunoglobulin and complement parallels pulmonary hemorrhage in a guinea pig model of severe pulmonary leptospirosis. Am J Pathol 164(3):1115–1127

    PubMed  Google Scholar 

  • Nally JE, Chow E, Fishbein MC, Blanco DR, Lovett MA (2005) Changes in lipopolysaccharide O antigen distinguish acute versus chronic Leptospira interrogans infections. Infect Immun 73(6):3251–3260

    PubMed  CAS  Google Scholar 

  • Nally JE, Whitelegge JP, Bassilian S, Blanco DR, Lovett MA (2007) Characterization of the outer membrane proteome of Leptospira interrogans expressed during acute lethal infection. Infect Immun 75(2):766–773

    PubMed  CAS  Google Scholar 

  • Nascimento AL, Ko AI, Martins EA, Monteiro-Vitorello CB, Ho PL, Haake DA, Verjovski-Almeida S, Hartskeerl RA, Marques MV, Oliveira MC, Menck CF, Leite LC, Carrer H, Coutinho LL, Degrave WM, Dellagostin OA, El-Dorry H, Ferro ES, Ferro MI, Furlan LR, Gamberini M, Giglioti EA, Goes-Neto A, Goldman GH, Goldman MH, Harakava R, Jeronimo SM, Junqueira-de-Azevedo IL, Kimura ET, Kuramae EE, Lemos EG, Lemos MV, Marino CL, Nunes LR, de Oliveira RC, Pereira GG, Reis MS, Schriefer A, Siqueira WJ, Sommer P, Tsai SM, Simpson AJ, Ferro JA, Camargo LE, Kitajima JP, Setubal JC, Van Sluys MA (2004) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186(7):2164–2172

    PubMed  CAS  Google Scholar 

  • Okuda M, Sakai Y, Matsuuchi M, Oikawa T, Watanabe M, Itamoto K, Iwata H, Kano R, Hasegawa A, Onishi T, Inokuma H (2005) Enzyme-linked immunosorbent assay for the detection of canine Leptospira antibodies using recombinant OmpL1 protein. J Vet Med Sci 67(3):249–254

    PubMed  CAS  Google Scholar 

  • Palaniappan RU, Chang YF, Jusuf SS, Artiushin S, Timoney JF, McDonough SP, Barr SC, Divers TJ, Simpson KW, McDonough PL, Mohammed HO (2002) Cloning and molecular characterization of an immunogenic LigA protein of Leptospira interrogans. Infect Immun 70(11):5924–5930

    PubMed  CAS  Google Scholar 

  • Palaniappan RU, Chang YF, Hassan F, McDonough SP, Pough M, Barr SC, Simpson KW, Mohammed HO, Shin S, McDonough P, Zuerner RL, Qu J, Roe B (2004) Expression of leptospiral immunoglobulin-like protein by Leptospira interrogans and evaluation of its diagnostic potential in a kinetic ELISA. J Med Microbiol 53(Pt 10):975–984

    PubMed  CAS  Google Scholar 

  • Palaniappan RU, Chang YF, Chang CF, Pan MJ, Yang CW, Harpending P, McDonough SP, Dubovi E, Divers T, Qu J, Roe B (2005) Evaluation of lig-based conventional and real time PCR for the detection of pathogenic leptospires. Mol Cell Probes 19(2):111–117

    PubMed  CAS  Google Scholar 

  • Palaniappan RU, McDonough SP, Divers TJ, Chen CS, Pan MJ, Matsumoto M, Chang YF (2006) Immunoprotection of recombinant leptospiral immunoglobulin-like protein A against Leptospira interrogans serovar Pomona infection. Infect Immun 74(3):1745–1750

    PubMed  CAS  Google Scholar 

  • Palaniappan RU, Ramanujam S, Chang YF (2007) Leptospirosis: pathogenesis, immunity, and diagnosis. Curr Opin Infect Dis 20(3):284–292

    PubMed  Google Scholar 

  • Pappas G, Cascio A (2006) Optimal treatment of leptospirosis: queries and projections. Int J Antimicrob Agents 28(6):491–496

    PubMed  CAS  Google Scholar 

  • Pappas G, Papadimitriou P, Siozopoulou V, Christou L, Akritidis N (2008) The globalization of leptospirosis: worldwide incidence trends. Int J Infect Dis 12(4):351–357

    PubMed  Google Scholar 

  • Pereira MM, Andrade J, Marchevsky RS, Ribeiro dos Santos R (1998) Morphological characterization of lung and kidney lesions in C3H/HeJ mice infected with Leptospira interrogans serovar icterohaemorrhagiae: defect of CD4+ and CD8+ T-cells are prognosticators of the disease progression. Exp Toxicol Pathol 50(3):191–198

    PubMed  CAS  Google Scholar 

  • Pereira MM, Da Silva JJ, Pinto MA, Da Silva MF, Machado MP, Lenzi HL, Marchevsky RS (2005) Experimental leptospirosis in marmoset monkeys (Callithrix jacchus): a new model for studies of severe pulmonary leptospirosis. Am J Trop Med Hyg 72(1):13–20

    PubMed  Google Scholar 

  • Picardeau M (2008) Conjugative transfer between Escherichia coli and Leptospira spp. as a new genetic tool. Appl Environ Microbiol 74(1):319–322

    PubMed  CAS  Google Scholar 

  • Picardeau M, Brenot A, Saint Girons I (2001) First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella. Mol Microbiol 40(1):189–199

    PubMed  CAS  Google Scholar 

  • Picardeau M, Bulach DM, Bouchier C, Zuerner RL, Zidane N, Wilson PJ, Creno S, Kuczek ES, Bommezzadri S, Davis JC, McGrath A, Johnson MJ, Boursaux-Eude C, Seemann T, Rouy Z, Coppel RL, Rood JI, Lajus A, Davies JK, Medigue C, Adler B (2008) Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS One 3(2):e1607

    PubMed  Google Scholar 

  • Pinne M, Choy HA, Haake DA (2010) The OmpL37 surface-exposed protein is expressed by pathogenic Leptospira during infection and binds skin and vascular elastin. PLoS Negl Trop Dis 4(9):e815

    PubMed  Google Scholar 

  • Reis RB, Ribeiro GS, Felzemburgh RD, Santana FS, Mohr S, Melendez AX, Queiroz A, Santos AC, Ravines RR, Tassinari WS, Carvalho MS, Reis MG, Ko AI (2008) Impact of environment and social gradient on Leptospira infection in urban slums. PLoS Negl Trop Dis 2(4):e228

    PubMed  Google Scholar 

  • Ren SX, Fu G, Jiang XG, Zeng R, Miao YG, Xu H, Zhang YX, Xiong H, Lu G, Lu LF, Jiang HQ, Jia J, Tu YF, Jiang JX, Gu WY, Zhang YQ, Cai Z, Sheng HH, Yin HF, Zhang Y, Zhu GF, Wan M, Huang HL, Qian Z, Wang SY, Ma W, Yao ZJ, Shen Y, Qiang BQ, Xia QC, Guo XK, Danchin A, Saint Girons I, Somerville RL, Wen YM, Shi MH, Chen Z, Xu JG, Zhao GP (2003) Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422(6934):888–893

    PubMed  CAS  Google Scholar 

  • Riley LW, Ko AI, Unger A, Reis MG (2007) Slum health: diseases of neglected populations. BMC Int Health Hum Rights 7:2

    PubMed  Google Scholar 

  • Ristow P, Bourhy P, Kerneis S, Schmitt C, Prevost MC, Lilenbaum W, Picardeau M (2008) Biofilm formation by saprophytic and pathogenic leptospires. Microbiology 154(Pt 5):1309–1317

    PubMed  CAS  Google Scholar 

  • Segers RP, van Gestel JA, van Eys GJ, van der Zeijst BA, Gaastra W (1992) Presence of putative sphingomyelinase genes among members of the family Leptospiraceae. Infect Immun 60(4):1707–1710

    PubMed  CAS  Google Scholar 

  • Seguro AC, Lomar AV, Rocha AS (1990) Acute renal failure of leptospirosis: nonoliguric and hypokalemic forms. Nephron 55(2):146–151

    PubMed  CAS  Google Scholar 

  • Sehgal SC, Sugunan AP, Murhekar MV, Sharma S, Vijayachari P (2000) Randomized controlled trial of doxycycline prophylaxis against leptospirosis in an endemic area. Int J Antimicrob Agents 13(4):249–255

    PubMed  CAS  Google Scholar 

  • Seixas FK, da Silva EF, Hartwig DD, Cerqueira GM, Amaral M, Fagundes MQ, Dossa RG, Dellagostin OA (2007) Recombinant Mycobacterium bovis BCG expressing the LipL32 antigen of Leptospira interrogans protects hamsters from challenge. Vaccine 26(1):88–95

    PubMed  CAS  Google Scholar 

  • Shimizu T, Matsusaka E, Nagakura N, Takayanagi K, Masuzawa T, Iwamoto Y, Morita T, Mifuchi I, Yanagihara Y (1987) Chemical properties of lipopolysaccharide-like substance (LLS) extracted from Leptospira interrogans serovar canicola strain Moulton. Microbiol Immunol 31(8):717–725

    PubMed  CAS  Google Scholar 

  • Silva EF, Medeiros MA, McBride AJ, Matsunaga J, Esteves GS, Ramos JG, Santos CS, Croda J, Homma A, Dellagostin OA, Haake DA, Reis MG, Ko AI (2007) The terminal portion of leptospiral immunoglobulin-like protein LigA confers protective immunity against lethal infection in the hamster model of leptospirosis. Vaccine 25(33):6277–6286

    PubMed  CAS  Google Scholar 

  • Silva EF, Santos CS, Athanazio DA, Seyffert N, Seixas FK, Cerqueira GM, Fagundes MQ, Brod CS, Reis MG, Dellagostin OA, Ko AI (2008) Characterization of virulence of Leptospira isolates in a hamster model. Vaccine 26(31):3892–3896

    PubMed  CAS  Google Scholar 

  • Sonrier C, Branger C, Michel V, Ruvoen-Clouet N, Ganiere JP, Andre-Fontaine G (2000) Evidence of cross-protection within Leptospira interrogans in an experimental model. Vaccine 19(1):86–94

    PubMed  CAS  Google Scholar 

  • Srikram A, Zhang K, Bartpho T, Lo M, Hoke DE, Sermswan RW, Adler B, Murray GL (2011) Cross-protective Immunity Against Leptospirosis Elicited by a Live, Attenuated Lipopolysaccharide Mutant. J Infect Dis 203(6):870–879

    PubMed  CAS  Google Scholar 

  • Sterling CR, Thiermann AB (1981) Urban rats as chronic carriers of leptospirosis: an ultrastructural investigation. Vet Pathol 18(5):628–637

    PubMed  CAS  Google Scholar 

  • Stevenson B, Choy HA, Pinne M, Rotondi ML, Miller MC, Demoll E, Kraiczy P, Cooley AE, Creamer TP, Suchard MA, Brissette CA, Verma A, Haake DA (2007) Leptospira interrogans endostatin-like outer membrane proteins bind host fibronectin, laminin and regulators of complement. PLoS One 2(11):e1188

    PubMed  Google Scholar 

  • Tchamedeu Kameni AP, Couture-Tosi E, Saint-Girons I, Picardeau M (2002) Inactivation of the spirochete recA gene results in a mutant with low viability and irregular nucleoid morphology. J Bacteriol 184(2):452–458

    PubMed  Google Scholar 

  • Tian YC, Hung CC, Li YJ, Chen YC, Chang MY, Yen TH, Hsu HH, Wu MS, Phillips A, Yang CW (2010) Leptospira santorosai serovar Shermani detergent extract induced an increases in fibronectin production through a toll-like receptor2-mediated pathway. Infect Immun 79(3):1134–1142

    PubMed  Google Scholar 

  • Trueba G, Zapata S, Madrid K, Cullen P, Haake D (2004) Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. Int Microbiol 7(1):35–40

    PubMed  Google Scholar 

  • Tu V, Adler B, Faine S (1982) The role of macrophages in the protection of mice against leptospirosis: in vitro and in vivo studies. Pathology 14(4):463–468

    PubMed  CAS  Google Scholar 

  • van Voorhis WC, Barrett LK, Nasio JM, Plummer FA, Lukehart SA (1996) Lesions of primary and secondary syphilis contain activated cytolytic T cells. Infect Immun 64(3):1048–1050

    PubMed  Google Scholar 

  • Verma A, Hellwage J, Artiushin S, Zipfel PF, Kraiczy P, Timoney JF, Stevenson B (2006) LfhA, a novel factor H-binding protein of Leptospira interrogans. Infect Immun 74(5):2659–2666

    PubMed  CAS  Google Scholar 

  • Vernel-Pauillac F, Merien F (2006) Proinflammatory and immunomodulatory cytokine mRNA time course profiles in hamsters infected with a virulent variant of Leptospira interrogans. Infect Immun 74(7):4172–4179

    PubMed  CAS  Google Scholar 

  • Victoriano AF, Smythe LD, Gloriani-Barzaga N, Cavinta LL, Kasai T, Limpakarnjanarat K, Ong BL, Gongal G, Hall J, Coulombe CA, Yanagihara Y, Yoshida S, Adler B (2009) Leptospirosis in the Asia Pacific region. BMC Infect Dis 9:147

    PubMed  Google Scholar 

  • Vieira ML, Vasconcellos SA, Goncales AP, de Morais ZM, Nascimento AL (2009) Plasminogen acquisition and activation at the surface of leptospira species lead to fibronectin degradation. Infect Immun 77(9):4092–4101

    PubMed  CAS  Google Scholar 

  • Vieira ML, Atzingen MV, Oliveira TR, Oliveira R, Andrade DM, Vasconcellos SA, Nascimento AL (2010a) In vitro identification of novel plasminogen-binding receptors of the pathogen Leptospira interrogans. PLoS One 5(6):e11259

    PubMed  Google Scholar 

  • Vieira ML, de Morais ZM, Goncales AP, Romero EC, Vasconcellos SA, Nascimento AL (2010b) Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV. J Infect 60(1):52–64

    PubMed  Google Scholar 

  • Vinh T, Adler B, Faine S (1986) Ultrastructure and chemical composition of lipopolysaccharide extracted from Leptospira interrogans serovar copenhageni. J Gen Microbiol 132(1):103–109

    PubMed  CAS  Google Scholar 

  • Viriyakosol S, Matthias MA, Swancutt MA, Kirkland TN, Vinetz JM (2006) Toll-like receptor 4 protects against lethal Leptospira interrogans serovar icterohaemorrhagiae infection and contributes to in vivo control of leptospiral burden. Infect Immun 74(2):887–895

    PubMed  CAS  Google Scholar 

  • Vivian JP, Beddoe T, McAlister AD, Wilce MC, Zaker-Tabrizi L, Troy S, Byres E, Hoke DE, Cullen PA, Lo M, Murray GL, Adler B, Rossjohn J (2009) Crystal structure of LipL32, the most abundant surface protein of pathogenic Leptospira spp. J Mol Biol 387(5):1229–1238

    PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    PubMed  CAS  Google Scholar 

  • Wangroongsarb P, Chanket T, Gunlabun K, Long do H, Satheanmethakul P, Jetanadee S, Thaipadungpanit J, Wuthiekanun V, Peacock SJ, Blacksell SD, Smythe LD, Bulach DM, Kalambaheti T (2007) Molecular typing of Leptospira spp based on putative O-antigen polymerase gene (wzy), the benefit over 16S rRNA gene sequence. FEMS Microbiol Lett 271(2):170–179

    PubMed  CAS  Google Scholar 

  • Watt G, Padre LP, Tuazon ML, Calubaquib C, Santiago E, Ranoa CP, Laughlin LW (1988) Placebo-controlled trial of intravenous penicillin for severe and late leptospirosis. Lancet 1(8583):433–435

    PubMed  CAS  Google Scholar 

  • Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I, Haake DA, Godowski PJ, Hayashi F, Ozinsky A, Underhill DM, Kirschning CJ, Wagner H, Aderem A, Tobias PS, Ulevitch RJ (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2(4):346–352

    PubMed  CAS  Google Scholar 

  • Xue F, Yan J, Picardeau M (2009) Evolution and pathogenesis of Leptospira spp.: lessons learned from the genomes. Microbes Infect 11(3):328–333

    PubMed  CAS  Google Scholar 

  • Tucunduva de Faria M, Athanazio DA, Goncalves Ramos EA, Silva EF, Reis MG, Ko AI (2007) Morphological alterations in the kidney of rats with natural and experimental Leptospira infection. J Comp Pathol 137(4):231–238

    PubMed  CAS  Google Scholar 

  • Xue F, Dong H, Wu J, Wu Z, Hu W, Sun A, Troxell B, Yang XF, Yan J (2010) Transcriptional responses of Leptospira interrogans to host innate immunity: significant changes in metabolism, oxygen tolerance, and outer membrane. PLoS Negl Trop Dis 4(10):e857

    PubMed  Google Scholar 

  • Yan W, Faisal SM, McDonough SP, Divers TJ, Barr SC, Chang CF, Pan MJ, Chang YF (2009) Immunogenicity and protective efficacy of recombinant Leptospira immunoglobulin-like protein B (rLigB) in a hamster challenge model. Microbes Infect 11(2):230–237

    PubMed  CAS  Google Scholar 

  • Yan W, Faisal SM, Divers T, McDonough SP, Akey B, Chang YF (2010a) Experimental Leptospira interrogans serovar Kennewicki infection of horses. J Vet Intern Med 24(4):912–917

    PubMed  CAS  Google Scholar 

  • Ristow P, Bourhy P, da Cruz McBride FW, Figueira CP, Huerre M, Ave P, Girons IS, Ko AI, Picardeau M (2007) The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog 3(7):e97

    PubMed  Google Scholar 

  • Yan W, Faisal SM, McDonough SP, Chang CF, Pan MJ, Akey B, Chang YF (2010b) Identification and characterization of OmpA-like proteins as novel vaccine candidates for Leptospirosis. Vaccine 28(11):2277–2283

    PubMed  CAS  Google Scholar 

  • Yang CW (2007) Leptospirosis renal disease: understanding the initiation by Toll-like receptors. Kidney Int 72(8):918–925

    PubMed  CAS  Google Scholar 

  • Yuri K, Takamoto Y, Okada M, Hiramune T, Kikuchi N, Yanagawa R (1993) Chemotaxis of leptospires to hemoglobin in relation to virulence. Infect Immun 61(5):2270–2272

    PubMed  CAS  Google Scholar 

  • Zhang YX, Geng Y, Yang JW, Guo XK, Zhao GP (2008) Cytotoxic activity and probable apoptotic effect of Sph2, a sphigomyelinase hemolysin from Leptospira interrogans strain Lai. BMB Rep 41(2):119–125

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Fu Chang D.V.M., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faisal, S.M., McDonough, S.P., Chang, YF. (2012). Leptospira: Invasion, Pathogenesis and Persistence. In: Embers, M. (eds) The Pathogenic Spirochetes: strategies for evasion of host immunity and persistence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5404-5_8

Download citation

Publish with us

Policies and ethics