Metal Oxide Nanowires: Fundamentals and Sensor Applications

  • Zhiyong Fan
  • Jia G. Lu
Part of the Integrated Analytical Systems book series (ANASYS)


Detection of chemicals species such as industrial toxic and inflammable gasses, chemical warfare agents, disease related chemicals, is of paramount importance to public safety and health. The driving force is to develop highly sensitive, selective, and stable sensors with rapid detection and recovery time. Metal oxide thin films have long been used as chemical sensors due to the rich oxygen vacancies on the surface that are electrically and chemically active. The chemical adsorption induces redox reactions and consequently alters the electrical conductance. However, there have been a number of limitations: relatively high operation temperature, indirect and inefficient refreshing method, and lack of chemical selectivity. In the surge of quasi-one-dimensional (Q1D) metal oxide nanowire research, it is demonstrated that the unique shape anisotropy significantly enhances the sensor performances due to the large surface-to-volume ratio and size comparable to the Debye screening length. This not only enhances the sensitivity at room temperature, but provides efficient modulation of the surface detection and desorption processes. More importantly, it opens a pathway for developing wireless low-power sensor network to transmit information from a remote site. This chapter provides a review of the state-of-the-art research covering the synthesis and fundamental properties of Q1D metal oxide systems, and focusing on their applications as chemical sensors.


Metal oxides Nanowires  Sensors  Redox reaction Surface-to-volume ratio  



The authors thank Dr. Dongdong Li at Shanghai Advanced Research Institute, Chinese Academy of Sciences and Mr. Miao Yu at Hong Kong University of Science and Technology for technical assistance on this chapter.


  1. 1.
    Ra Y, Choi K, Kim J, Hahn Y, Im Y (2008) Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. Small 4:1105–1109CrossRefGoogle Scholar
  2. 2.
    Francioso L, Taurino AM, Forleo A, Siciliano P (2008) TiO2 nanowires array fabrication and gas sensing properties. Sens Actuator B Chem 130:70–76CrossRefGoogle Scholar
  3. 3.
    Duan XF, Lieber CM (2000) General synthesis of compound semiconductor nanowires. Adv Mater 12:298–302CrossRefGoogle Scholar
  4. 4.
    Knez M et al (2003) Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires. Nano Lett 3:1079–1082CrossRefGoogle Scholar
  5. 5.
    Lu JG, Chang P, Fan Z (2006) Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications. Mater Sci Eng R-Rep 52:49–91CrossRefGoogle Scholar
  6. 6.
    Hurst SJ, Payne EK, Qin LD, Mirkin CA (2006) Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew Chem Int Edit 45:2672–2692CrossRefGoogle Scholar
  7. 7.
    Han S, Zhang DH, Zhou CW (2006) Synthesis and electronic properties of ZnO/CoZnO core-shell nanowires. Appl Phys Lett 88:133109CrossRefGoogle Scholar
  8. 8.
    Wagner RS, Ellis WC (1964) Vapor-Liquid-Solid Mechanism of Crystal Growth. Appl Phys Lett 4:89–90CrossRefGoogle Scholar
  9. 9.
    Wu YY, Yang PD (2001) Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc 123:3165–3166CrossRefGoogle Scholar
  10. 10.
    Stach EA et al (2003) Watching GaN nanowires grow. Nano Lett 3:867–869CrossRefGoogle Scholar
  11. 11.
    Chang PC et al (2004) ZnO nanowires synthesized by vapor trapping CVD method. Chem Mater 16:5133–5137CrossRefGoogle Scholar
  12. 12.
    Huang MH et al (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13:113–116CrossRefGoogle Scholar
  13. 13.
    Zhao QX, Willander M, Morjan RE, Hu Q, Campbell EEB (2003) Optical recombination of ZnO nanowires grown on sapphire and Si substrate. Appl Phys Lett 83:165CrossRefGoogle Scholar
  14. 14.
    Fan ZY, Wang DW, Chang PC, Tseng WY, Lu JG (2004) ZnO nanowire field-effect transistor and oxygen sensing property. Appl Phys Lett 85:5923–5925CrossRefGoogle Scholar
  15. 15.
    Li SY, Lee CY, Tseng TY (2003) Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. J Cryst Growth 247:357–362CrossRefGoogle Scholar
  16. 16.
    Lee CJ et al (2002) Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl Phys Lett 81:3648–3650CrossRefGoogle Scholar
  17. 17.
    Gao PX, Ding Y, Wang ZL (2003) Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Lett 3:1315–1320CrossRefGoogle Scholar
  18. 18.
    Chik H, Liang J, Cloutier SG, Kouklin N, Xu JM (2004) Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl Phys Lett 84:3376–3378CrossRefGoogle Scholar
  19. 19.
    Li C et al (2003) Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv Mater 15:143–146CrossRefGoogle Scholar
  20. 20.
    Wu ZH, Mei XY, Kim D, Blumin M, Ruda HE (2002) Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy. Appl Phys Lett 81:5177–5179CrossRefGoogle Scholar
  21. 21.
    Thompson RS, Li D, Witte CM, Lu JG (2009) Weak Localization and Electron-Electron Interactions in Indium-Doped ZnO Nanowires. Nano Lett 9:3991–3995CrossRefGoogle Scholar
  22. 22.
    Park WI, Kim DH, Jung SW, Yi GC (2002) Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl Phys Lett 80:4232–4234CrossRefGoogle Scholar
  23. 23.
    Liu X, Wu XH, Cao H, Chang RPH (2004) Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys 95:3141–3147CrossRefGoogle Scholar
  24. 24.
    Huang MH et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899CrossRefGoogle Scholar
  25. 25.
    Liang CH, Meng GW, Lei Y, Phillipp F, Zhang LD (2001) Catalytic growth of semiconducting In2O3 nanofibers. Adv Mater 13:1330–1333CrossRefGoogle Scholar
  26. 26.
    Wan Q, Dattoli E, Lu W (2008) Doping-dependent electrical characteristics of SnO2 nanowires. Small 4:451–454CrossRefGoogle Scholar
  27. 27.
    Chen YJ, Li JB, Han YS, Yang XZ, Dai JH (2002) The effect of Mg vapor source on the formation of MgO whiskers and sheets. J Cryst Growth 245:163–170CrossRefGoogle Scholar
  28. 28.
    Chang PC, Fan ZY, Tseng WY, Rajagopal A, Lu JG (2005) beta-Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor. Appl Phys Lett 87:222102CrossRefGoogle Scholar
  29. 29.
    Wu JM, Shih HC, Wu WT, Tseng YK, Chen IC (2005) Thermal evaporation growth and the luminescence property of TiO2 nanowires. J Cryst Growth 281:384–390CrossRefGoogle Scholar
  30. 30.
    Chang PC et al (2006) High-performance ZnO nanowire field effect transistors. Appl Phys Lett 89:133113CrossRefGoogle Scholar
  31. 31.
    Yuan GD et al (2008) Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Adv Mater 20:168–173CrossRefGoogle Scholar
  32. 32.
    Bae SY, Na CW, Kang JH, Park J (2005) Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J Phys Chem B 109:2526–2531CrossRefGoogle Scholar
  33. 33.
    He H, Lao CS, Chen LJ, Davidovic D, Wang ZL (2005) Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. J Am Chem Soc 127:16376–16377CrossRefGoogle Scholar
  34. 34.
    Yamamoto T, Katayama-Yoshida H (1999) Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn J Appl Phys 2(38):L166–L169CrossRefGoogle Scholar
  35. 35.
    Hwang SO et al (2008) Synthesis of vertically aligned manganese-doped Fe3O4 nanowire arrays and their excellent room-temperature gas sensing ability. J Phys Chem C 112:13911–13916CrossRefGoogle Scholar
  36. 36.
    Zheng CL, Wan JG, Cheng Y, Cu DH, Zhan YJ (2005) Preparation of SnO2 nanowires synthesized by vapor-solid mode and its growth mechanism. Int J Mod Phys B 19:2811–2816CrossRefGoogle Scholar
  37. 37.
    Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949CrossRefGoogle Scholar
  38. 38.
    Kong XY, Wang ZL (2003) Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett 3:1625–1631CrossRefGoogle Scholar
  39. 39.
    Jiang XC, Herricks T, Xia YN (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2:1333–1338CrossRefGoogle Scholar
  40. 40.
    Fan ZY, Wen XG, Yang SH, Lu JG (2005) Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl Phys Lett 87:013113CrossRefGoogle Scholar
  41. 41.
    Li D, Hu J, Wu R, Lu JG (2010) Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology 21:485502CrossRefGoogle Scholar
  42. 42.
    Possin GE (1970) A Method for Forming Very Small Diameter Wires. Rev Sci Instrum 41:772–774CrossRefGoogle Scholar
  43. 43.
    Martin CR (1994) Nanomaterials: A Membrane-Based Synthetic Approach. Science 266:1961–1966CrossRefGoogle Scholar
  44. 44.
    Routkevitch D, Bigioni T, Moskovits M, Xu JM (1996) Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J Phys Chem 100:14037–14047CrossRefGoogle Scholar
  45. 45.
    Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gösele U (2002) Self-ordering regimes of porous alumina: The 10 % porosity rule. Nano Lett 2:677–680CrossRefGoogle Scholar
  46. 46.
    Li D, Thompson RS, Bergmann G, Lu JG (2008) Template-based Synthesis and Magnetic Properties of Cobalt Nanotube Arrays. Adv Mater 20:4575–4578CrossRefGoogle Scholar
  47. 47.
    Masuda H et al (2001) Square and triangular nanohole array architectures in anodic alumina. Adv Mater 13:189–192CrossRefGoogle Scholar
  48. 48.
    Masuda H et al (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71:2770–2772CrossRefGoogle Scholar
  49. 49.
    Fan ZY et al (2010) Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption. Nano Lett 10:3823–3827CrossRefGoogle Scholar
  50. 50.
    Fan ZY et al (2009) Three dimensional nanopillar array photovoltaics on low cost and flexible substrate. Nat Mater 8:648–653CrossRefGoogle Scholar
  51. 51.
    Li D, Jiang C, Jiang J, Lu JG (2009) Self-Assembly of Periodic Serrated Nanostructures. Chem Mater 21:253–258CrossRefGoogle Scholar
  52. 52.
    Li D, Zhao LA, Jiang CH, Lu JG (2010) Formation of Anodic Aluminum Oxide with Serrated Nanochannels. Nano Lett 10:2766–2771CrossRefGoogle Scholar
  53. 53.
    Chang PC, Chen HY, Ye JS, Sheu FS, Lu JG (2007) Vertically aligned antimony nanowires as solid-state pH sensors. Chemphyschem 8:57–61CrossRefGoogle Scholar
  54. 54.
    Liu ZW et al (2008) Shape anisotropy and magnetization modulation in hexagonal cobalt nanowires. Adv Funct Mater 18:1573–1578CrossRefGoogle Scholar
  55. 55.
    Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15:997–1000CrossRefGoogle Scholar
  56. 56.
    Fan ZY et al (2006) Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Appl Phys Lett 89:213110–213112CrossRefGoogle Scholar
  57. 57.
    Penner RM, Martin CR (1986) Controlling the Morphology of Electronically Conductive Polymers. J Electrochem Soc 133:2206–2207CrossRefGoogle Scholar
  58. 58.
    Park S, Chung S, Mirkin CA (2004) Hybrid Organic-Inorganic, Rod-Shaped Nanoresistors and Diodes. J Am Chem Soc 126:11772–11773CrossRefGoogle Scholar
  59. 59.
    Dan YP, Cao YY, Mallouk TE, Johnson AT, Evoy S (2007) Dielectrophoretically assembled polymer nanowires for gas sensing. Sensor Actuat B Chem. 125:55–59CrossRefGoogle Scholar
  60. 60.
    Cheng B, Samulski ET (2001) Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J Mat Chem 11:2901–2902CrossRefGoogle Scholar
  61. 61.
    Shimizu T et al (2007) Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template. Adv Mater 19:917–920CrossRefGoogle Scholar
  62. 62.
    Che G, Lakshmi BB, Martin CR, Fisher ER, Ruoff RS (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template metho. Chem Mat 10:260–267CrossRefGoogle Scholar
  63. 63.
    Meyer B K et al (2004) Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Status Solidi B-Basic Solid State Phys 241:231–260Google Scholar
  64. 64.
    Yang YH, Chen XY, Feng Y, Yang GW (2007) Physical Mechanism of Blue-Shift of UV Luminescence of a Single Pencil-Like ZnO Nanowire. Nano Lett 7:3879–3883CrossRefGoogle Scholar
  65. 65.
    Park WI, Yi GC (2004) Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv Mater 16:87–90CrossRefGoogle Scholar
  66. 66.
    Chang PC, Chien CJ, Stichtenoth D, Ronning C, Lu JG (2007) Finite size effect in ZnO nanowires. Appl Phys Lett 90:113101CrossRefGoogle Scholar
  67. 67.
    Shalish I, Temkin H, Narayanamurti V (2004) Size-dependent surface luminescence in ZnO nanowires. Phys Rev B 69:245401CrossRefGoogle Scholar
  68. 68.
    Chang PC, Lu JG (2008) Temperature dependent conduction and UV induced metal-to-insulator transition in ZnO nanowires. Appl Phys Lett 92:212113CrossRefGoogle Scholar
  69. 69.
    Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449CrossRefGoogle Scholar
  70. 70.
    Park WI, Kim JS, Yi GC, Bae MH, Lee HJ (2004) Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Appl Phys Lett 85:5052–5054CrossRefGoogle Scholar
  71. 71.
    Fan ZY et al (2004) Photoluminescence and polarized photodetection of single ZnO nanowires. Appl Phys Lett 85:6128–6130CrossRefGoogle Scholar
  72. 72.
    Zhang Y, Kolmakov A, Chretien S, Metiu H, Moskovits M (2004) Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett 4:403–407CrossRefGoogle Scholar
  73. 73.
    Hendrich VE , Cox P A (1994) Surface Science of Metal OxidesGoogle Scholar
  74. 74.
    Fan ZY, Lu JG (2005) Gate-refreshable nanowire chemical sensors. Appl Phys Lett 86:123510CrossRefGoogle Scholar
  75. 75.
    Li QH, Liang YX, Wan Q, Wang TH (2004) Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl Phys Lett 85:6389–6391CrossRefGoogle Scholar
  76. 76.
    Kalinin SV et al (2005) Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. J Appl Phys 98:044503CrossRefGoogle Scholar
  77. 77.
    Wang Y et al (2008) Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications. Adv Funct Mater 18:1131–1137CrossRefGoogle Scholar
  78. 78.
    Kang BS et al (2005) Hydrogen and ozone gas sensing using multiple ZnO nanorods. Appl Phys A Mater 80:1029–1032CrossRefGoogle Scholar
  79. 79.
    Sberveglieri G et al (2007) Synthesis and characterization of semiconducting nanowires for gas sensing. Sens Actuator B Chem 121:208–213CrossRefGoogle Scholar
  80. 80.
    Baratto C et al (2005) Metal oxide nanocrystals for gas sensing. Sens Actuator B Chem 109:2–6CrossRefGoogle Scholar
  81. 81.
    Qi Q, Zhang T, Liu L, Zheng X (2009) Synthesis and toluene sensing properties of SnO2 nanofibers. Sens Actuator B Chem 137:471–475CrossRefGoogle Scholar
  82. 82.
    Ponzoni A et al (2008) Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection. IEEE Sens J 8:735–742CrossRefGoogle Scholar
  83. 83.
    Yu C et al (2005) Integration of metal oxide nanobelts with microsystems for nerve agent detection. Appl Phys Lett 86:063101CrossRefGoogle Scholar
  84. 84.
    You GF, Thong JTL (2010) Thermal oxidation of polycrystalline tungsten nanowire. J Appl Phys 108:094312CrossRefGoogle Scholar
  85. 85.
    Liu Z et al (2007) Room temperature gas sensing of p-type TeO2 nanowires. Appl Phys Lett 90:173119CrossRefGoogle Scholar
  86. 86.
    Liu X, Li C, Han S, Han J, Zhou CW (2003) Synthesis and electronic transport studies of CdO nanoneedles. Appl Phys Lett 82:1950–1952CrossRefGoogle Scholar
  87. 87.
    Kim YS et al (2005) Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl Phys Lett 86:213105CrossRefGoogle Scholar
  88. 88.
    Kim I et al (2006) Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett 6:2009–2013CrossRefGoogle Scholar
  89. 89.
    Li C et al (2003) Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors. J Phys Chem B 107:12451–12455CrossRefGoogle Scholar
  90. 90.
    Xue XY et al (2006) Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Appl Phys Lett 88:201907CrossRefGoogle Scholar
  91. 91.
    Wang XH, Zhang J, Zhu ZQ (2006) Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance. Appl Surf Sci 252:2404–2411CrossRefGoogle Scholar
  92. 92.
    Meier DC, Semancik S, Button B, Strelcov E, Kolmakov A (2007) Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl Phys Lett 91:063118CrossRefGoogle Scholar
  93. 93.
    Wang GX, Park JS, Park MS, Gou XL (2008) Synthesis and high gas sensitivity of tin oxide nanotubes. Sens Actuator B Chem 131:313–317CrossRefGoogle Scholar
  94. 94.
    Raible I, Burghard M, Schlecht U, Yasuda A, Vossmeyer T (2005) V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines. Sens Actuator B Chem 106:730–735CrossRefGoogle Scholar
  95. 95.
    Ryu K, Zhang D, Zhoua C (2008) High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates. Appl Phys Lett 92:093111CrossRefGoogle Scholar
  96. 96.
    Hernandez-Ramirez F et al (2007) High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens Actuator B Chem 121:3–17CrossRefGoogle Scholar
  97. 97.
    Xu JQ, Chen YP, Li YD, Shen JN (2005) Gas sensing properties of ZnO nanorods prepared by hydrothermal method. J Mater Sci 40:2919–2921CrossRefGoogle Scholar
  98. 98.
    Xu JQ, Chen YP, Chen DY, Shen JN (2006) Hydrothermal synthesis and gas sensing characters of ZnO nanorods. Sens Actuator B Chem 113:526–531CrossRefGoogle Scholar
  99. 99.
    Wang CH, Chu XF, Wu MW (2006) Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens Actuator B Chem 113:320–323CrossRefGoogle Scholar
  100. 100.
    Wang HT et al (2005) Detection of hydrogen at room temperature with catalyst-coated multiple ZnO nanorods. Appl Phys A-Mater Sci Process 81:1117–1119CrossRefGoogle Scholar
  101. 101.
    Varghese OK, Gong DW, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuator B Chem 93:338–344CrossRefGoogle Scholar
  102. 102.
    Rout CS, Kulkarni GU, Rao CNR (2007) Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides. J Phys D-Appl Phys 40:2777–2782CrossRefGoogle Scholar
  103. 103.
    Ying Z, Wan Q, Song ZT, Feng SL (2004) SnO2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology 15:1682–1684CrossRefGoogle Scholar
  104. 104.
    Hsueh T, Hsu C, Chang S, Chen I (2007) Laterally grown ZnO nanowire ethanol gas sensors. Sens Actuator B Chem 126:473–477CrossRefGoogle Scholar
  105. 105.
    Liu JF, Wang X, Peng Q, Li YD (2005) Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv Mater 17:764–767CrossRefGoogle Scholar
  106. 106.
    Chu XF, Wang CH, Jiang DL, Zheng CM (2004) Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction. Chem Phys Lett 399:461–464CrossRefGoogle Scholar
  107. 107.
    Yu MF, Atashbar MZ, Chen XL (2005) Mechanical and electrical characterization of beta-Ga2O3 nanostructures for sensing applications. IEEE Sens J 5:20–25CrossRefGoogle Scholar
  108. 108.
    Wan Q et al (2004) Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Appl Phys Lett 84:3085–3087CrossRefGoogle Scholar
  109. 109.
    Zhang YS et al (2005) Zinc oxide nanorod and nanowire for humidity sensor. Appl Surf Sci 242:212–217CrossRefGoogle Scholar
  110. 110.
    Kuang Q, Lao C, Wang ZL, Xie Z, Zheng L (2007) High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 129:6070–6071CrossRefGoogle Scholar
  111. 111.
    Varghese OK, Grimes CA (2003) Metal oxide nanoarchitectures for environmental sensing. J Nanosci Nanotechno 3:277–293CrossRefGoogle Scholar
  112. 112.
    Fu XQ, Wang C, Yu HC, Wang YG, Wang TH (2007) Fast humidity sensors based on CeO2 nanowires. Nanotechnology 18:145503CrossRefGoogle Scholar
  113. 113.
    Chang S et al (2008) Highly Sensitive ZnO Nanowire Acetone Vapor Sensor With Au Adsorption. IEEE Trans Nanotechnol 7:754–759CrossRefGoogle Scholar
  114. 114.
    Han N, Tian Y, Wu X, Chen Y (2009) Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens Actuator B Chem 138:228–235CrossRefGoogle Scholar
  115. 115.
    Fan ZY, Lu JG (2006) Chemical sensing with ZnO nanowire field-effect transistor. IEEE Trans Nano 5:393CrossRefGoogle Scholar
  116. 116.
    Rout CS, Krishna SH, Vivekchand SRC, Govindaraj A, Rao CNR (2006) Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem Phys Lett 418:586–590CrossRefGoogle Scholar
  117. 117.
    Chen P, Shen G, Zhou C (2008) Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures. IEEE Trans Nanotechnol 7:668–682CrossRefGoogle Scholar
  118. 118.
    Zhang DH et al (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 4:1919–1924CrossRefGoogle Scholar
  119. 119.
    Hernandez-Ramirez F et al (2007) Portable microsensors based on individual SnO2 nanowires. Nanotechnology 18:495501CrossRefGoogle Scholar
  120. 120.
    Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov A (2007) A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7:3182–3188CrossRefGoogle Scholar
  121. 121.
    Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673CrossRefGoogle Scholar
  122. 122.
    Zhang Y, Kolmakov A, Lilach Y, Moskovits M (2005) Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. J Phys Chem B 109:1923–1929CrossRefGoogle Scholar
  123. 123.
    Li C et al (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82:1613–1615CrossRefGoogle Scholar
  124. 124.
    Geistlinger H (1993) Electron Theory of Thin-Film Gas Sensors. Sens Actuator B Chem 17:47–60CrossRefGoogle Scholar
  125. 125.
    Zhang DJ et al (2003) Doping dependent NH3 sensing of indium oxide nanowires. Appl Phys Lett 83:1845–1847CrossRefGoogle Scholar
  126. 126.
    Sysoev VV, Button BK, Wepsiec K, Dmitriev S, Kolmakov A (2006) Toward the nanoscopic “electronic nose”: Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. Nano Lett 6:1584–1588CrossRefGoogle Scholar
  127. 127.
    Chen P, Ishikawa FN, Chang H, Ryu K, Zhou C (2009) A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology 20:125503CrossRefGoogle Scholar
  128. 128.
    Baik JM et al (2010) Tin-Oxide-Nanowire-Based Electronic Nose Using Heterogeneous Catalysis as a Functionalization Strategy. ACS Nano 4:3117–3122CrossRefGoogle Scholar
  129. 129.
    Fan ZY et al (2008) Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett 8:20–25CrossRefGoogle Scholar
  130. 130.
    Yu X et al (2008) Wireless hydrogen sensor network using AlGaN/GaN high electron mobility transistor differential diode sensors. Sens Actuator B Chem 135:188–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electronic and Computer EngineeringHong Kong University of Science and TechnologyKowloonChina
  2. 2.Department of Physics and Department of ElectrophysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations