Skip to main content

Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

  • Chapter
  • First Online:
  • 2728 Accesses

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

In order to develop next generation chemical sensors using nano-scale materials, we need to understand the sensing mechanisms at atomic level. This requires synthesizing chemical sensing materials with controlled structure, chemical composition and surface morphology. Although the commonly used wet chemical synthesis methods provide quality materials for large-scale production of materials, alternative thin film deposition techniques such as sputtering, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE) can also be useful to achieve atomic-scale control over the structure and composition over a large fabrication area for potential device fabrication as well as to gain an understanding of the chemical sensing properties of nano-scale materials. Especially, MBE has been used to synthesize metal oxide thin films with ultra-pure, well-ordered surfaces, which can be used to understand the effect of surface morphology, structure, and composition on the gas sensing properties. In this chapter, we provide a detailed discussion of thin film growth using MBE along with some in situ characterization capabilities such as reflection high energy electron diffraction (RHEED) and low energy electron diffraction (LEED). In addition, this chapter focuses on the discussion of the growth, characterization and gas sensing properties of metal oxide thin films such as doped CeO2 and SnO2. The chapter also emphasizes the significance of various in situ and ex situ characterization techniques to understand the material properties there by developing methodologies to synthesize better materials with tunable characteristics for sensing applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce DS, Taurino AM (2004) Solid state gas sensors: state of the art and future activities. ChemInform 35(29). doi:10.1002/chin.200429283

  2. Moseley PT (1997) Solid state gas sensors. Meas Sci Technol 8(3):223

    CAS  Google Scholar 

  3. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng, B 139(1):1–23

    CAS  Google Scholar 

  4. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792

    CAS  Google Scholar 

  5. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  6. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    CAS  Google Scholar 

  7. Comini E et al (2007) Single crystal ZnO nanowires as optical and conductometric chemical sensor. J Phys D Appl Phys 40(23):7255

    CAS  Google Scholar 

  8. Hwang IS, Kim SJ, Choi JK, Choi J, Ji H, Kim GT, Cao G, Lee JH (2010) Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires. Sens Actuators B: Chem 148(2):595–600

    Google Scholar 

  9. Kolmakov A, Zhang Y, Cheng G, Moskovits M (2003) Detection of CO and O2 using Tin Oxide Nanowire sensors. Adv Mater 15(12):997–1000

    CAS  Google Scholar 

  10. Kumar M et al (2009) Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients. Nanotechnology 20(23):235608

    Google Scholar 

  11. Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C (2003) In2O3 nanowires as chemical sensors. Appl Phys Lett 82(10):1613–1615

    CAS  Google Scholar 

  12. Chu D, Zeng YP, Jiang D, Masuda Y (2009) In2O3-SnO2 nano-toasts and nanorods: precipitation preparation, formation mechanism, and gas sensitive properties. Sens Actuators B: Chem 137(2), 630–636. 32

    Google Scholar 

  13. Forleo A, Francioso L, Capone S, Casino F, Siciliano P, Tan OK, Hui H (2011) Fabrication at wafer level of miniaturized gas sensors based on SnO2 nanorods deposited by PECVD and gas sensing characteristics. Sens Actuators B: Chem 154(2):283–287

    Google Scholar 

  14. Zhang Y, Yu K, Jiang D, Zhu Z, Geng H, Luo L (2005) Zinc oxide nanorod and nanowire for humidity sensor. Appl Surf Sci 242(1–2):212–217

    CAS  Google Scholar 

  15. Zhi-Peng S et al (2006) Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology 17(9):2266

    Google Scholar 

  16. Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871

    CAS  Google Scholar 

  17. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949

    CAS  Google Scholar 

  18. Gao L, Li Q, Song Z, Wang J (2000) Preparation of nano-scale titania thick film and its oxygen sensitivity. Sens Actuators B: Chem 71(3):179–183

    Google Scholar 

  19. Gupta S, Kuchibhatla SVNT, Engelhard MH, Shutthanandan V, Nachimuthu P, Jiang W, Saraf LV, Thevuthasan S, Prasad S (2009) Influence of samaria doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Sens Actuators B: Chem 139(2):380–386

    Google Scholar 

  20. Hu Y, Tan OK, Pan JS, Huang H, Cao W (2005) The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sens Actuators B: Chem 108(1–2):244–249

    Google Scholar 

  21. Ichimura M, Baoleer A, Sueyoshi T (2010) Properties of gas sensors based on photochemically deposited nano- crystalline SnO2 films. Phys Status Solidi (c) 7(3–4), 1168–1171

    Google Scholar 

  22. Ogita M, Higo K, Nakanishi Y, Hatanaka Y (2001) Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci 175–176:721–725

    Google Scholar 

  23. Sanghavi R, Nandasiri M, Kuchibhatla S, Weilin J, Varga T, Nachimuthu P, Engelhard MH, Shutthanandan V, Thevuthasan S, Kayani A, Prasad S (2011) Thickness dependency of thin-film samaria-doped ceria for oxygen sensing. Sens J, IEEE 11(1), 217–224

    Google Scholar 

  24. Chambers SA (2010) Epitaxial growth and properties of doped transition metal and complex oxide films. Adv Mater 22(2):219–248

    CAS  Google Scholar 

  25. DiMeo JF, Cavicchi RE, Semancik S, Suehle JS, Tea NH, Small J, Armstrong JT, Kelliher JT (1998) In situ conductivity characterization of oxide thin film growth phenomena on microhotplates. J Vac Sci Technol A: Vac, Surf, Films 16(1):131–138

    CAS  Google Scholar 

  26. LeGore LJ, Lad RJ, Moulzolf SC, Vetelino JF, Frederick BG, Kenik EA (2002) Defects and morphology of tungsten trioxide thin films. Thin Solid Films 406(1–2):79–86

    CAS  Google Scholar 

  27. Moulzolf SC, Ding S-a, Lad RJ (2001) Stoichiometry and microstructure effects on tungsten oxide chemiresistive films. Sens Actuators B: Chem 77(1–2):375–382

    Google Scholar 

  28. Moulzolf SC, Frankel DJ, Lad RJ (2002) In situ four-point conductivity and hall effect apparatus for vacuum and controlled atmosphere measurements of thin film materials. Rev Sci Instrum 73(6):2325–2330

    CAS  Google Scholar 

  29. Poirier GE, Cavicchi RE, Semancik S (1993) Ultrathin heteroepitaxial SnO2 films for use in gas sensors. AVS, Chicago, pp 1392–1395

    Google Scholar 

  30. Vetrone J, Chung YW, Cavicchi R, Semancik S (1993) Role of initial conductance and gas pressure on the conductance response of single-crystal SnO2 thin films to H2, O2, and CO. J Appl Phys 73(12):8371–8376

    CAS  Google Scholar 

  31. Goldman AM (2006) Oxide heterostructures grown by molecular beam epitaxy: spin injection in superconductors and magnetic coupling phenomena. Appl Surf Sci 252(11):3928–3932

    CAS  Google Scholar 

  32. Oh S, Di Luccio T, Eckstein JN (2005) T linearity of in-plane resistivity in Bi2Sr2CaCu2O8 + δ thin films. Phys Rev B 71(5):052504

    Google Scholar 

  33. Parendo KA, Sarwa B, Tan KH, Goldman AM (2006) Hot-electron effects in the two-dimensional superconductor-insulator transition. Phys Rev B 74(13):134517

    Google Scholar 

  34. Parendo KA, Tan KHSB, Goldman AM (2006) Electrostatic and parallel-magnetic-field tuned two-dimensional superconductor-insulator transitions. Phys Rev B 73(17):174527

    Google Scholar 

  35. Chambers SA, Liang Y (1999) Growth of β-MnO2 films on TiO2(110) by oxygen plasma assisted molecular beam epitaxy. Surf Sci 420(2–3):123–133

    CAS  Google Scholar 

  36. Gao Y, Chambers SA (1997) Heteroepitaxial growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy. J Cryst Growth 174(1–4):446–454

    CAS  Google Scholar 

  37. Guo LW, Peng DL, Makino H, Inaba K, Ko HJ, Sumiyama K, Yao T (2000) Structural and magnetic properties of Mn3O4 films grown on MgO(001) substrates by plasma-assisted MBE. J Magn Magn Mater 213(3):321–325

    CAS  Google Scholar 

  38. Lind DM, Berry SD, Chern G, Mathias H, Testardi LR (1992) Growth and structural characterization of Fe3O4 and NiO thin films and superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. Phys Rev B 45(4):1838–1850

    CAS  Google Scholar 

  39. Peacor SD, Hibma T (1994) Reflection high-energy electron diffraction study of the growth of NiO and CoO thin films by molecular beam epitaxy. Surf Sci 301(1–3):11–18

    CAS  Google Scholar 

  40. Altman EI, Droubay T, Chambers SA (2002) Growth of MoO3 films by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 414(2):205–215

    CAS  Google Scholar 

  41. Chen PJ, Goodman DW (1994) Epitaxial growth of ultrathin Al2O3 films on Ta(110). Surf Sci 312(3):L767–L773

    CAS  Google Scholar 

  42. Freund HJ (1995) Metal oxide surfaces: electronic structure and molecular adsorption. Phys Status Solidi (b) 192(2), 407–440

    Google Scholar 

  43. Ohsawa T, Lyubinetsky I, Du Y, Henderson MA, Shutthanandan V, Chambers SA (2009) Crystallographic dependence of visible-light photoactivity in epitaxial TiO2-xNx anatase and rutile. Physical Review B 79(8):085401

    Google Scholar 

  44. Peden CHF, Herman GS (1999) Z. Ismagilov, I.; Kay, B. D.; Henderson, M. A.; Kim, Y.-J.; Chambers, S. A., Model catalyst studies with single crystals and epitaxial thin oxide films. Catal Today 51(3–4):513–519

    CAS  Google Scholar 

  45. René F (2000) Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces. Surf Sci Rep 38(6–8):195–294

    Google Scholar 

  46. Street SC, Xu C, Goodman DW (1997) The physical and chemical properties of ultrathin oxide films. Annu Rev Phys Chem 48(1):43–68

    CAS  Google Scholar 

  47. Chambers SA (2000) Epitaxial growth and properties of thin film oxides. Surf Sci Rep 39(5–6):105–180

    CAS  Google Scholar 

  48. Kim YJ, Gao Y, Herman GS, Thevuthasan S, Jiang W, McCready DE, Chambers SA (1999) Growth and structure of epitaxial CeO2 by oxygen-plasma-assisted molecular 35 beam epitaxy. J Vac Sci Technol A: Vac, Surf, Films 17(3):926–935

    CAS  Google Scholar 

  49. Kuchibhatla SVNT, Hu SY, Yu ZQ, Shutthanandan V, Li YL, Nachimuthu P, Jiang W, Thevuthasan S, Henager CH, Sundaram SK (2009) Morphology, orientation relationship, and stability analysis of Cu2O nanoclusters on SrTiO3(100). Appl Phys Lett 95(5), 053111–053111-3

    Google Scholar 

  50. Francioso L, Presicce DS, Taurino AM, Rella R, Siciliano P, Ficarella A (2003) Automotive application of sol-gel TiO2 thin film-based sensor for lambda measurement. Sens Actuators B: Chem 95(1–3):66–72

    Google Scholar 

  51. Izu N, Shin W, Matsubara I, Murayama N (2004) Development of resistive oxygen sensors based on cerium oxide thick film. J Electroceram 13(1):703–706

    CAS  Google Scholar 

  52. Papkovsky DB (1995) New oxygen sensors and their application to biosensing. Sens Actuators B: Chem 29(1–3):213–218

    Google Scholar 

  53. Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38(21):4271–4282

    CAS  Google Scholar 

  54. Smiddy M, Fitzgerald M, Kerry JP, Papkovsky DB, O’ Sullivan CK, Guilbault GG (2002) Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: impact of oxygen content on lipid oxidation. Meat Sci 61(3):285–290

    CAS  Google Scholar 

  55. Tsukada K, Sakai S, Hase K, Minamitani H (2003) Development of catheter-type optical oxygen sensor and applications to bioinstrumentation. Biosens Bioelectron 18(12):1439–1445

    CAS  Google Scholar 

  56. Benammar M (1994) Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors: a review. Meas Sci Technol 5(7):757

    CAS  Google Scholar 

  57. Lari A, Khodadadi A, Mortazavi Y (2009) Semiconducting metal oxides as electrode material for YSZ-based oxygen sensors. Sens Actuators B: Chem 139(2):361–368

    Google Scholar 

  58. Ogita M, Yuasa S, Kobayashi K, Yamada Y, Nakanishi Y, Hatanaka Y (2003) Presumption and improvement for gallium oxide thin film of high temperature oxygen sensors. Appl Surf Sci 212–213:397–401

    Google Scholar 

  59. Balducci G, Islam MS, Kaspar J, Fornasiero P, Graziani M (2000) Bulk reduction and oxygen migration in the ceria-based oxides. Chem Mater 12(3):677–681

    CAS  Google Scholar 

  60. Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S (2000) Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J Phys Chem B 104(47):11110–11116

    CAS  Google Scholar 

  61. Maskell WC (1987) Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors. J Phys E: Sci Instrum 20(10):1156

    CAS  Google Scholar 

  62. Dietz H (1982) Gas-diffusion-controlled solid-electrolyte oxygen sensors. Solid State Ionics 6(2):175–183

    CAS  Google Scholar 

  63. Gerblinger J, Lohwasser W, Lampe U, Meixner H (1995) High temperature oxygen sensor based on sputtered cerium oxide. Sens Actuators B: Chem 26(1–3):93–96

    Google Scholar 

  64. Beie HJ, Gnörich A (1991) Oxygen gas sensors based on CeO2 thick and thin films. Sens Actuators B: Chem 4(3–4):393–399

    Google Scholar 

  65. Izu N, Itoh T, Shin W, Matsubara I, Murayama N (2007) The effect of hafnia doping on the resistance of ceria for use in resistive oxygen sensors. Sens Actuators B: Chem 123(1):407–412

    Google Scholar 

  66. Izu N, Oh-hori N, Itou M, Shin W, Matsubara I, Murayama N (2005) Resistive oxygen gas sensors based on Ce1-xZrxO2 nano powder prepared using new precipitation method. Sens Actuators B: Chem 108(1–2):238–243

    Google Scholar 

  67. Izu N, Shin W, Matsubara I, Murayama N (2006) Evaluation of response characteristics of resistive oxygen sensors based on porous cerium oxide thick film using pressure modulation method. Sens Actuators B: Chem 113(1):207–213

    Google Scholar 

  68. Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B: Chem 95(1–3):73–77

    Google Scholar 

  69. Várhegyi EB, Perczel IV, Gerblinger J, Fleischer M, Meixner H, Giber J (1994) Auger and SIMS study of segregation and corrosion behaviour of some semiconducting oxide gas-sensor materials. Sens Actuators B: Chem 19(1–3):569–572

    Google Scholar 

  70. Agrafiotis C, Tsetsekou A, Stournaras CJ, Julbe A, Dalmazio L, Guizard C (2000) Deposition of nanophase doped-ceria systems on ceramic honeycombs for automotive catalytic applications. Solid State Ionics 136–137(1301–1306):37

    Google Scholar 

  71. Bera D, Kuchibhatla SVNT, Azad S, Saraf L, Wang CM, Shutthanandan V, Nachimuthu P, McCready DE, Engelhard MH, Marina OA, Baer DR, Seal S, Thevuthasan S (2008) Growth and characterization of highly oriented gadolinia-doped ceria (111) thin films on zirconia (111)/sapphire (0001) substrates. Thin Solid Films 516(18):6088–6094

    CAS  Google Scholar 

  72. Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162(1):30–40

    CAS  Google Scholar 

  73. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36(5):1105–1117

    CAS  Google Scholar 

  74. Yu ZQ, Kuchibhatla SVNT, Saraf LV, Marina OA, Wang CM, Engelhard MH, Shutthanandan V, Nachimuthu P, Thevuthasan S (2008) Conductivity of oriented samaria-doped ceria thin films grown by oxygen-plasma-assisted molecular beam epitaxy. Electrochem Solid-State Lett 11(5):B76–B78

    CAS  Google Scholar 

  75. Bellino MG, Lamas DG, Walsöe de Reca NE (2006) Enhanced ionic conductivity in nanostructured, heavily doped ceria ceramics. Adv Funct Mater 16(1):107–113

    CAS  Google Scholar 

  76. Esposito V, Traversa E (2008) Design of electroceramics for solid oxides fuel cell applications: playing with ceria. J Am Ceram Soc 91(4):1037–1051

    CAS  Google Scholar 

  77. Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178(37–38):1890–1897

    CAS  Google Scholar 

  78. Sanna S, Esposito V, Pergolesi D, Orsini A, Tebano A, Licoccia S, Balestrino G, Traversa E (2009) Fabrication and electrochemical properties of epitaxial samarium-doped ceria films on SrTiO3-buffered MgO substrates. Adv Funct Mater 19(11):1713–1719

    CAS  Google Scholar 

  79. Zha S, Xia C, Meng G (2003) Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115(1):44–48

    CAS  Google Scholar 

  80. Kilner JA (2008) Ionic conductors: feel the strain. Nat Mater 7(11):838–839

    CAS  Google Scholar 

  81. Kilner JA, Brook RJ (1982) A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6(3):237–252

    CAS  Google Scholar 

  82. Kim DJ (1989) Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M = Hf4 + , Zr4 + , Ce4 + , Th4 + , U4 +] solid solutions. J Am Ceram Soc 72(8):1415–1421

    CAS  Google Scholar 

  83. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2006) Optimization of ionic conductivity in doped ceria. Proc Nat Acad Sci USA 103(10):3518–3521

    CAS  Google Scholar 

  84. Gerhardt-Anderson R, Nowick AS (1981) Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ionics 5:547–550

    CAS  Google Scholar 

  85. Hayashi H, Sagawa R, Inaba H, Kawamura K (2000) Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants. Solid State Ionics 131(3–4):281–290

    CAS  Google Scholar 

  86. Minervini L, Zacate MO, Grimes RW (1999) Defect cluster formation in M2O3-doped CeO2. Solid State Ionics 116(3–4):339–349

    CAS  Google Scholar 

  87. Eguchi K (1997) Ceramic materials containing rare earth oxides for solid oxide fuel cell. J Alloy Compd 250(1–2):486–491

    CAS  Google Scholar 

  88. Fu Y-P, Wen S-B, Lu C-H (2008) Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells. J Am Ceram Soc 91(1):127–131

    CAS  Google Scholar 

  89. Jung G-B, Huang T-J, Chang C-L (2002) Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte. J Solid State Electrochem 6(4):225–230

    CAS  Google Scholar 

  90. Mansilla C, Holgado JP, Espinós JP, González-Elipe AR, Yubero F (2007) Microstructure and transport properties of ceria and samaria doped ceria thin films prepared by EBE-IBAD. Surf Coat Technol 202(4–7):1256–1261

    CAS  Google Scholar 

  91. Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J Appl Electrochem 18(4):527–531

    CAS  Google Scholar 

  92. Zhan Z, Wen T-L, Tu H, Lu Z-Y (2001) AC impedance investigation of samarium-doped ceria. J Electrochem Soc 148(5):A427–A432

    CAS  Google Scholar 

  93. Yu ZQ, Kuchibhatla SVNT, Engelhard MH, Shutthanandan V, Wang CM, Nachimuthu P, Marina OA, Saraf LV, Thevuthasan S, Seal S (2008) Growth and structure of epitaxial Ce0.8Sm0.2O1.9 by oxygen-plasma-assisted molecular beam epitaxy. J Cryst Growth 310(10):2450–2456

    CAS  Google Scholar 

  94. Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF (2003) Redox properties of water on the oxidized and reduced surfaces of CeO2(1 1 1). Surf Sci 526(1–2):1–18

    CAS  Google Scholar 

  95. Kim YJ, Thevuthasan S, Shutthananadan V, Perkins CL, McCready DE, Herman GS, Gao Y, Tran TT, Chambers SA, Peden CHF (2002) Growth and structure of epitaxial Ce1-xZrxO2 thin films on yttria-stabilized zirconia (111). J Electron Spectrosc Relat Phenom 126(1–3):177–190

    CAS  Google Scholar 

  96. Thevuthasan S, Peden CHF, Engelhard MH, Baer DR, Herman GS, Jiang W, Liang Y, Weber WJ (1999) The ion beam materials analysis laboratory at the environmental molecular sciences laboratory. Nucl Instrum Methods Phys Res, Sect A 420(1–2):81–89

    CAS  Google Scholar 

  97. Mayer M (1997) SIMNRA user’s guide. Tech Rep IPP 9/113

    Google Scholar 

  98. Mayer M (1999) SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. In: Proceedings of the 15th international conference on the application of accelerators in research and industry

    Google Scholar 

  99. Sanghavi RP, Nandasiri M, Kuchibhatla S, Nachimuthu P, Engelhard MH, Shutthanandan V, Jiang W, Thevuthasan S, Kayani A, Prasad S (2009) Performance evaluation of an oxygen sensor as a function of the samaria doped ceria film thickness. MRS Online Proc Libr 1209:P03–07

    Google Scholar 

  100. Moos R, Menesklou W, Schreiner H-J, Härdtl KH (2000) Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sens Actuators B: Chem 67(1–2):178–183

    Google Scholar 

  101. Dolbec R, El Khakani MA, Serventi AM, Trudeau M, Saint-Jacques RG (2002) Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition. Thin Solid Films 419(1–2):230–236

    CAS  Google Scholar 

  102. Kim S, Oliver M (2010) Structural, electrical, and optical properties of reactively sputtered SnO2 thin films. Met Mater Int 16(3), 441–446

    Google Scholar 

  103. Kim TW, Lee DU, Lee JH, Choo DC, Jung M, Yoon YS (2001) Structural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on p-InSb (111) substrates. J Appl Phys 90(1):175–180

    CAS  Google Scholar 

  104. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79(2–4):47–154

    CAS  Google Scholar 

  105. Saukko S, Lassi U, Lantto V, Kroneld M, Novikov S, Kuivalainen P, Rantala TT, Mizsei J (2005) Experimental studies of O2 − SnO2 surface interaction using powder, thick films and monocrystalline thin films. Thin Solid Films 490(1):48–53

    CAS  Google Scholar 

  106. Batzill M, Diebold U (2007) Surface studies of gas sensing metal oxides. Phys Chem Chem Phys 9(19):2307–2318

    CAS  Google Scholar 

  107. Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices. Academic, San Diego

    Google Scholar 

  108. Schierbaum KD, Wiemhöfer HD, Göpel W (1988) Defect structure and sensing mechanism of SnO2 gas sensors: comparative electrical and spectroscopic studies. Solid State Ionics 28–30(Part 2):1631–1636

    Google Scholar 

  109. Seal S, Shukla S (2002) Nanocrystalline SnO gas sensors in view of surface reactions and modifications. JOM 54(9):35–38

    CAS  Google Scholar 

  110. Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Interactions of tin oxide surface with O2, H2O and H2. Surf Sci 86:335–344

    CAS  Google Scholar 

  111. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7(1):63–75

    CAS  Google Scholar 

  112. Chang S-C (1980) Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. J Vac Sci Technol 17(1):366–369

    CAS  Google Scholar 

  113. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167

    CAS  Google Scholar 

  114. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B: Chem 107(1):209–232

    Google Scholar 

  115. Göpel W (1994) New materials and transducers for chemical sensors. Sens Actuators B: Chem 18(1–3):1–21

    Google Scholar 

  116. Morrison SR (1981) Semiconductor gas sensors. Sens Actuators 2:329–341

    Google Scholar 

  117. Gardner JW (1990) A non-linear diffusion-reaction model of electrical conduction in semiconductor gas sensors. Sens Actuators B: Chem 1(1–6):166–170

    Google Scholar 

  118. Geistlinger H (1993) Electron theory of thin-film gas sensors. Sens Actuators B: Chem 17(1):47–60

    CAS  Google Scholar 

  119. McAleer JF, Moseley PT, Norris JOW, Williams DE (1987) Tin dioxide gas sensors. Part 1. Aspects of the surface chemistry revealed by electrical conductance variations. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 83(4):1323–1346

    CAS  Google Scholar 

  120. Morrison SR (1987) Mechanism of semiconductor gas sensor operation. Sens Actuators 11(3):283–287

    CAS  Google Scholar 

  121. Srivastava RK, Lal P, Dwivedi R, Srivastava SK (1994) Sensing mechanism in tin oxide-based thick-film gas sensors. Sens Actuators B: Chem 21(3):213–218

    Google Scholar 

  122. Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sens Actuators B: Chem 23(2–3):103–109

    Google Scholar 

  123. Korotcenkov G, Cho BK, Tolstoy V (2010) SnO2-based thin film gas sensors with functionalized surface. Adv Mater Res 93–94:145–148

    Google Scholar 

  124. Kroneld M, Novikov S, Saukko S, Kuivalainen P, Kostamo P, Lantto V (2006) Gas sensing properties of SnO2 thin films grown by MBE. Sens Actuators B: Chem 118(1–2):110–114

    Google Scholar 

  125. Feng X, Ma J, Yang F, Ji F, Luan C (2008) Preparation and characterization of single crystalline SnO2 films deposited on α-Al2O3 (0001) by MOCVD. Mater Lett 62(12–13):1809–1811

    CAS  Google Scholar 

  126. Semancik S, Cavicchi RE (1991) The growth of thin, epitaxial SnO2 films for gas sensing applications. Thin Solid Films 206(1–2):81–87

    CAS  Google Scholar 

  127. Lee DS, Rue GH, Huh JS, Choi SD, Lee DD (2001) Sensing characteristics of epitaxially-grown tin oxide gas sensor on sapphire substrate. Sens Actuators B: Chem 77(1–2):90–94

    Google Scholar 

  128. Ohgaki T, Matsuoka R, Watanabe K, Matsumoto K, Adachi Y, Sakaguchi I, Hishita S, Ohashi N, Haneda H (2010) Synthesizing SnO2 thin films and characterizing sensing performances. Sens Actuators B: Chem 150(1), 99–104

    Google Scholar 

  129. Kim DH, Kim W-S, Lee SB, Hong S-H (2010) Gas sensing properties in epitaxial SnO2 films grown on TiO2 single crystals with various orientations. Sens Actuators B: Chem 147(2):653–659

    Google Scholar 

  130. Rosental A, Tarre A, Gerst A, Sundqvist J, Hårsta A, Aidla A, Aarik J, Sammelselg V, Uustare T (2003) Gas sensing properties of epitaxial SnO2 thin films prepared by atomic layer deposition. Sens Actuators B: Chem 93(1–3):552–555

    Google Scholar 

  131. Palgrave RG, Bourlange A, Payne DJ, Foord JS, Egdell RG (2009) Interfacial diffusion during growth of SnO2(110) on TiO2(110) by oxygen plasma assisted molecular beam epitaxy. Cryst Growth Des 9(4):1793–1797

    CAS  Google Scholar 

  132. White ME, Tsai MY, Wu F, Speck JS (2008) Plasma-assisted molecular beam epitaxy and characterization of SnO2(101) on r-plane sapphire. J Vac Sci Technol A: Vac, Surf, Films 26(5):1300–1307

    CAS  Google Scholar 

  133. Tsai MY, White ME, Speck JS (2008) Plasma-assisted molecular beam epitaxy of SnO2 on TiO2. J Cryst Growth 310(18):4256–4261

    CAS  Google Scholar 

  134. Batzill M, Burst JM, Diebold U (2005) Pure and cobalt-doped SnO2(101) films grown by molecular beam epitaxy on Al2O3. Thin Solid Films 484(1–2):132–139

    CAS  Google Scholar 

  135. Hishita S, Janecek P, Haneda H (2010) Epitaxial growth of tin oxide film on TiO2(1 1 0) using molecular beam epitaxy. J Cryst Growth 312(20):3046–3049

    CAS  Google Scholar 

  136. Chen JS, Li HL, Huang JL (2002) Structural and CO sensing characteristics of Ti-added SnO2 thin films. Appl Surf Sci 187(3–4):305–312

    CAS  Google Scholar 

  137. Zakrzewska K, Radecka M (2007) TiO2-SnO2 system for gas sensing-Photodegradation of organic contaminants. Thin Solid Films 515(23):8332–8338

    CAS  Google Scholar 

  138. Hishita S, Janecek P, Haneda H (2009) Epitaxial growth of SnO2 film on Sn-doped TiO2(110). Vacuum 84(5):597–601

    CAS  Google Scholar 

  139. Winter R, Scharnagl K, Fuchs A, Doll T, Eisele I (2000) Molecular beam evaporation-grown indium oxide and indium aluminium films for low-temperature gas sensors. Sens Actuators B: Chem 66(1–3):85–87

    Google Scholar 

  140. Bourlange A, Payne DJ, Palgrave RG, Foord JS, Egdell RG, Jacobs RMJ, Schertel A, Hutchison JL, Dobson PJ (2009) Investigation of the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 517(15), 4286–4294

    Google Scholar 

  141. Mei ZX, Wang Y, Du XL, Zeng ZQ, Ying MJ, Zheng H, Jia JF, Xue QK, Zhang Z (2006) Growth of In2O3 single-crystalline film on sapphire(0 0 0 1) substrate by molecular beam epitaxy. J Cryst Growth 289(2):686–689

    CAS  Google Scholar 

  142. Taga N, Maekawa M, Shigesato Y, Yasui I, Haynes TE (1998) Deposition of hetero-epitaxial In2O3 thin films by molecular beam epitaxy. Jpn J Appl Phys 37(12A), 6524–6529

    Google Scholar 

  143. Chen Y, Bagnall DM, Zhu Z, Sekiuchi T, Park KT, Hiraga K, Yao T, Koyama S, Shen MY, Goto T (1997) Growth of ZnO single crystal thin films on c-plane (0 0 0 1) sapphire by plasma enhanced molecular beam epitaxy. J Cryst Growth 181(1–2):165–169

    CAS  Google Scholar 

  144. Fons P, Iwata K, Niki S, Yamada A, Matsubara K (1999) Growth of high-quality epitaxial ZnO films on α-Al2O3. J Cryst Growth 201–202:627–632

    Google Scholar 

  145. Heo YW, Ip K, Pearton SJ, Norton DP, Budai JD (2006) Growth of ZnO thin films on c-plane Al2O3 by molecular beam epitaxy using ozone as an oxygen source. Appl Surf Sci 252(20):7442–7448

    CAS  Google Scholar 

  146. Jian-Feng Y, You-Ming L, Hong-Wei L, Yi-Chun L, Bing-Hui L, Xi-Wu F, Jun-Ming Z (2005) Growth and properties of ZnO nanotubes grown on Si(1 1 1) substrate by plasma-assisted molecular beam epitaxy. J Cryst Growth 280(1–2):206–211

    Google Scholar 

  147. Liang HW, Lu YM, Shen DZ, Li BH, Zhang ZZ, Shan CX, Zhang JY, Fan XW, Du GT (2006) Growth of vertically aligned single crystal ZnO nanotubes by plasma-molecular beam epitaxy. Solid State Commun 137(4):182–186

    CAS  Google Scholar 

  148. Kang BS, Heo YW, Tien LC, Norton DP, Ren F, Gila BP, Pearton SJ (2005) Hydrogen and ozone gas sensing using multiple ZnO nanorods. Appl Phys A Mater Sci Process 80(5):1029–1032

    CAS  Google Scholar 

  149. Tien LC, Norton DP, Pearton SJ, Wang HT, Ren F (2007) Nucleation control for ZnO nanorods grown by catalyst-driven molecular beam epitaxy. Appl Surf Sci 253(10):4620–4625

    CAS  Google Scholar 

  150. Greenwood OD, Moulzolf SC, Blau PJ, Lad RJ (1999) The influence of microstructure on tribological properties of WO3 thin films. Wear 232(1):84–90

    CAS  Google Scholar 

  151. Lad RJ (2002) Heteroepitaxy of tungsten oxide films on sapphire and silicon for chemiresistive sensor applications. Proc IEEE, Sens 1(393–397):44

    Google Scholar 

  152. LeGore LJ, Greenwood OD, Paulus JW, Frankel DJ, Lad RJ (1997) Controlled growth of WO3 films. AVS, Philadelphia, pp 1223–1227

    Google Scholar 

  153. Gao W, Klie R, Altman EI (2005) Growth of anatase films on vicinal and flat LaAlO3 (110) substrates by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 485(1–2):115–125

    CAS  Google Scholar 

  154. Gao Y, Chambers SA (1996) MBE growth and characterization of epitaxial TiO2 and Nb-doped TiO2 films. Mater Lett 26(4–5):217–221

    CAS  Google Scholar 

  155. Shao R, Wang C, McCready DE, Droubay TC, Chambers SA (2007) Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites. Surf Sci 601(6):1582–1589

    CAS  Google Scholar 

  156. Weng X, Fisher P, Skowronski M, Salvador PA, Maksimov O (2008) Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrates using reactive molecular beam epitaxy. J Cryst Growth 310(3):545–550

    CAS  Google Scholar 

Download references

Acknowledgments

A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suntharampillai Thevuthasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nandasiri, M.I., Kuchibhatla, S.V.N.T., Thevuthasan, S. (2013). Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_6

Download citation

Publish with us

Policies and ethics