Skip to main content

Surface Science Studies of Metal Oxide Gas Sensing Materials

  • Chapter
  • First Online:
Metal Oxide Nanomaterials for Chemical Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

In this chapter we present recent advances in the study of metal oxide surfaces and put them in relation to gas sensing properties. A reoccurring scheme is the dependence of chemical surface properties on the crystallographic orientation of the surface. This dependence will become more important in gas sensing applications as nanomaterials with controlled crystal shapes are being designed. In particular we focus on differences of the surface properties of the two polar surfaces of ZnO and the two most abundant bulk terminations of rutile TiO2, i.e. the (110) and (011) crystallographic orientations. On the example of these metal oxides, we describe the use of vacuum based surface science techniques, especially scanning tunneling microscopy and photoemission spectroscopy, to obtain structural, chemical, and electronic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Göpel W (1985) Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors. Prog Surf Sci 20:9

    Article  Google Scholar 

  2. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Article  CAS  Google Scholar 

  3. Batzill M, Diebold U (2007) Surface studies of gas sensing metal oxides. Phys Chem Chem Phys 9:2307

    Article  CAS  Google Scholar 

  4. Batzill M (2006) Surface science studies of gas sensing materials: SnO2. Sensors 6:1345

    Article  CAS  Google Scholar 

  5. Wöll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82:55

    Article  Google Scholar 

  6. Chevtchenko SA, Moore JC, Özgür U, Gu X, Baski AA, Morkoc H, Nemeth B, Nause JE (2006) Comparative study of the (0001) and (000–1) surfaces of ZnO. Appl Phys Lett 89:182111

    Article  Google Scholar 

  7. Lahiri J, Senanayake S, Batzill M (2008) Soft x-ray photoemission of clean and sulfur-covered polar ZnO surfaces: a view of the stabilization of polar oxide surfaces. Phys Rev B 78:155414

    Article  Google Scholar 

  8. Dulub O, Diebold U, Kresse G (2003) Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys Rev Lett 90:016102

    Article  Google Scholar 

  9. Bagus PS, Illas F, Pacchioni G, Parmigiani F (1999) Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. J Electron Spectrosc Relat Phenom 100:215

    Article  CAS  Google Scholar 

  10. Kresse G, Dulub O, Diebold U (2003) Competing stabilization mechanism of the polar ZnO(0001)-Zn surface. Phys Rev B 68:245409

    Article  Google Scholar 

  11. Önsten A, Stoltz D, Palmgren P, Yu S, Göthelid M, Karlsson UO (2010) Water adsorption on ZnO(0001): transition from triangular surface structure to a disordered hydroxyl terminated phase. J Phys Chem C 114:11157

    Article  Google Scholar 

  12. Valtiner M, Torrelles X, Pareek A, Borodin S, Gies H, Grundmeier G (2010) In Situ study of the polar ZnO(0001)-Zn surface in Alkaline electrolytes. J Phys Chem C 114:15440

    Article  CAS  Google Scholar 

  13. Kunat M, Gil Girol S, Becker T, Burghaus U, Wöll C (2002) Stability of the polar surfaces of ZnO: A reinvestigation using He-atom scattering. Phys Rev B 66:081402

    Article  Google Scholar 

  14. Meyer B, Marx D (2003) Density-functional study of the structure and stability of ZnO surfaces. Phys Rev B 67:035403

    Article  Google Scholar 

  15. Piper LFJ, Preston ARH, Fedorov A, Cho SW, DeMasi A, Smith KE (2010) Direct evidence of metallicity at ZnO(000–1)-(1 × 1) surfaces from angle resolved photoemission spectroscopy. Phys Rev B 81:233305

    Article  Google Scholar 

  16. Ozawa K, Mase K (2010) Metallization of ZnO(10–10) by adsorption of hydrogen, methanol, and water: angle-resolved photoelectron spectroscopy. Phys Rev B 81:205322

    Article  Google Scholar 

  17. Li L, King DL (2006) H2S removal with ZnO during fuel processing for PEM fuel cell applications. Catal Today 116:537–541

    Article  CAS  Google Scholar 

  18. Lahiri J, Batzill M (2008) Surface functionalizationSurface functionalization of ZnO photocatalysts with monolayer ZnS. J Phys Chem C 112:4304

    Article  CAS  Google Scholar 

  19. Knop-Gericke A, Kleimenov E, Haevecker M, Blume R, Teschner D, Zafeiratos S, Schloegl R, Bukhtiyarov VI, Kaichev VV, Prosvirin IP, Nizovskii AI, Bluhm H, Barinov A, Dudin P, Kiskinova M (2009) X-Ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal 52:213

    Article  CAS  Google Scholar 

  20. Zhang C, Grass ME, McDaniel AH, DeCaluwe SC, El Gabaly F, Liu Z, McCarty KF, Farrow RL, Linne MA, Hussain Z, Jackson GS, Bluhm H, Eichhorn BW (2010) Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nature Mat. 9:944

    Article  CAS  Google Scholar 

  21. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53

    Article  CAS  Google Scholar 

  22. Liang Y, Gan SP, Chambers SA, Altman EI (2001) Surface structure of anatase TiO2(001): reconstruction, atomic steps, and domains. Phys Rev B 63:235402

    Article  Google Scholar 

  23. Chambers SA, Wang CM, Thevuthasan S, Droubay T, McCready DE, Lea AS, Shutthanandan V, Windisch CF (2002) Epitaxial growth and properties of MBE-grown ferromagnetic Co-doped TiO2 anatase films on SrTiO3(001) and LaAlO3(001). Thin Solid Films 418:197

    Article  CAS  Google Scholar 

  24. Dohnálek Z, Lyubinetsky I, Rousseau R (2010) Thermally-driven processes on rutile TiO2(110)-1 × 1: a direct view at the atomic scale. Prog Surf Sci 85:161

    Article  Google Scholar 

  25. Torrelles X, Cabailh G, Lindsay R, Bikondoa O, Roy J, Zegenhagen J, Teobaldi G, Hofer WA, Thornton G (2008) Geometric structure of TiO2(011)(2 × 1). Phys Rev Lett 101:185501

    Article  CAS  Google Scholar 

  26. Gong X-Q, Khorshidi N, Stierle A, Vonk V, Ellinger C, Dosch H, Cheng H, Selloni A, He Y, Dulub O, Diebold U (2009) The 2 × 1 reconstruction of the rutile TiO2(011) surface: a combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. Surf Sci 603:138

    Article  CAS  Google Scholar 

  27. He Y, Li W-K, Gong X-Q, Dulub O, Selloni A, Diebold U (2009) Nucleation and growth of 1D water clusters on Rutile TiO2 (011)-2 × 1. Phys Chem C 113:10329–10332

    Article  CAS  Google Scholar 

  28. Beck TJ, Klust A, Batzill M, Diebold U, Di Valentin C, Selloni A (2004) Surface structure of TiO2(011)-(2 × 1). Phys Rev Lett 93:036104

    Article  CAS  Google Scholar 

  29. Guo Q, Cocks I, Williams EM (1997) The orientation of acetate on a TiO2(110) surface. J Chem Phys 106:2924

    Article  CAS  Google Scholar 

  30. Thevuthasan S, Herman GS, Kim YJ, Chambers SA, Peden CHF, Wang Z, Ynzunza RX, Tober ED, Morais J, Fadley CS (1998) The structure of formate on TiO2(110) by scanned-energy and scanned-angle photoelectron diffraction. Surf Sci 401:261

    Article  CAS  Google Scholar 

  31. Gutierrez-Sosa A, Martinez-Escolano P, Raza H, Lindsay R, Wincott PL, Thornton G (2001) Orientation of carboxylates on TiO2(110). Surf Sci 471:163

    Article  CAS  Google Scholar 

  32. Bates SP, Kresse G, Gillan MJ (1998) The adsorption and dissociation of ROH molecules on TiO2(110). Surf Sci 409:336

    Article  CAS  Google Scholar 

  33. Onishi H, Iwasawa Y (1996) STM observation of surface reactions on a metal oxide. Surf Sci 357:773

    Article  Google Scholar 

  34. Tao J, Luttrell T, Bylsma J, Batzill M (2011) Adsorption of acetic acid on rutile TiO2(110) vs (011)-2 × 1 surfaces. J Phys Chem C 115:3434

    Article  CAS  Google Scholar 

  35. Henrich VE, Dresselhaus G, Zeiger HJ (1976) Observation of two-dimensional phases associated with defect states on the surface of TiO2. Phys RevLett 36:1335

    CAS  Google Scholar 

  36. Henderson MA, Epling WS, Peden CHF, Perkins CL (2003) Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(110). J Phys Chem B 107:534–545

    Article  CAS  Google Scholar 

  37. Kurtz RL, Stockbauer R, Madey TE, Roman E, Desegovia JL (1989) Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf Sci 218:178

    Article  CAS  Google Scholar 

  38. Zhang Z, Jeng S-P, Henrich VE (1991) Cation-ligand hybridization for stoichiometric and reduced TiO2 (110) surfaces determined by resonant photoemission. Phys Rev B 43:12004

    Article  CAS  Google Scholar 

  39. Bao S, Liu G, Woodruff DP (1988) Angle-resolved polarised light photoemission study of the formation and structure of acetate on Cu(110). Surf Sci 203:89

    Article  CAS  Google Scholar 

  40. Karis O, Hasselstrom J, Wassdahl N, Weinelt M, Nilsson A, Nyberg M, Pettersson LGM, Stohr J, Samant MG (2000) The bonding of simple carboxylic acids on Cu(110). J Chem Phys 112:8146

    Article  CAS  Google Scholar 

  41. Tao J, Batzill M (2010) Role of surface structure on the charge trapping in TiO2 photocatalysts. J Phys Chem Lett 1:3200

    Article  CAS  Google Scholar 

  42. Redinger A, Hansen H, Linke U, Rosandi Y, Urbassek HM, Michely T (2006) Superior regularity in erosion patterns by planar subsurface channeling. Phys Rev Lett 96:106103

    Article  Google Scholar 

  43. Redinger A, Rosandi Y, Urbassek HM, Michely T (2008) Step-edge sputtering through grazing incidence ions investigated by scanning tunneling microscopy and molecular dynamics simulations. Phys Rev B 77:195436

    Article  Google Scholar 

  44. Luttrell T, Batzill M (2010) Nanoripple formation on TiO2(110) by low-energy grazing incidence ion sputtering. Phys Rev B 82:035408

    Article  Google Scholar 

  45. Gong XQ, Selloni A, Batzill M, Diebold U (2006) Steps on anatase TiO2(101). Nat Mater 5:665

    Article  CAS  Google Scholar 

  46. Luttrell T, Li WK, Gong XQ, Batzill M (2009) New directions for atomic steps: step alignment by grazing incident ion beams on TiO2(110). Phys Rev Lett 102:166103

    Article  Google Scholar 

  47. Li M, Hebenstreit W, Gross L, Diebold U, Henderson MA, Jennison DR, Schultz PA, Sears MP (1999) Oxygen-induced restructuring of the TiO2(110) surface: a comprehensive study. Surf Sci 437:173

    Article  CAS  Google Scholar 

  48. Bowker M, Bennett RA (2009) The role of Ti3+ interstitials in TiO2(110) reduction and oxidation. J Phys Condens Matt 21:474224

    Article  Google Scholar 

  49. Stone P, Bennett RA, Bowker M (1999) Reactive re-oxidation of reduced TiO2(110) surfaces demonstrated by high temperature STM movies. New J Phys 1:8

    Article  Google Scholar 

  50. McCarty KF (2003) Growth regimes of the oxygen-deficient TiO2(110) surface exposed to oxygen. Surf Sci 543:185

    Article  CAS  Google Scholar 

  51. Tao J, Luttrell T, Batzill M (2011) A two-dimensional phase of TiO2 with a reduced bandgap. Nat Chem 3:296

    Article  CAS  Google Scholar 

  52. Gurlo Nanosensors A (2010) Does crystal shape matter? Small 6:2077

    Article  Google Scholar 

Download references

Acknowledgments

Support from the National Science Foundation under grant CHE-0840547 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Batzill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tao, J., Batzill, M. (2013). Surface Science Studies of Metal Oxide Gas Sensing Materials. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_2

Download citation

Publish with us

Policies and ethics