Insights into the Mechanism of Gas Sensor Operation

Part of the Integrated Analytical Systems book series (ANASYS)


Since the development of the first models of gas detection on metal-oxide-based sensors much effort has been made to describe the mechanism responsible for gas sensing. Despite progress in recent years, a number of key issues remain the subject of controversy; for example, the disagreement between the results of electrophysical and spectroscopic characterization, as well as the lack of proven mechanistic description of surface reactions involved in gas sensing. In the present chapter the basics as well as the main problems and unresolved issues associated with the chemical aspects of gas sensing mechanism in chemiresistors based on semiconducting metal oxides are addressed.


Oxygen Vacancy Work Function Semiconducting Metal Oxide Oxygen Adsorption Charged Atomic Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heiland G, Mollwo E, Stockmann F (1959) Electronic processes in zinc oxide. Solid State Phys 8:191–323CrossRefGoogle Scholar
  2. 2.
    Many A, Goldstein Y, Grover NB (1971) Semiconductor surfaces. North-Holland Publishing Company, Amsterdam, 496Google Scholar
  3. 3.
    Morrison SR (1955) Surface-barrier effects in adsorption, illustrated by zinc oxide. Adv Catal 7:259–301CrossRefGoogle Scholar
  4. 4.
    Morrison SR (1977) The chemical physics of surfaces, Plenum Press, New York, 415Google Scholar
  5. 5.
    Wolkenstein T (1960) Electron theory of catalysis on semiconductors. Adv Catal 12:189–264Google Scholar
  6. 6.
    Wolkenstein T (1987) Electronic processes on the surface of semiconductors during chemisorption, Consult Bur New York, 431Google Scholar
  7. 7.
    Wolkenstein T (1964) Elektronentheorie der Katalyse an Halbleitern, Verlin: VEBGoogle Scholar
  8. 8.
    Hauffe K (1955) Application of the theory of semiconductors to problems of heterogeneous catalysis. Adv Catal 7:213–57CrossRefGoogle Scholar
  9. 9.
    Hauffe K (1955) Application of the semiconductor theory to problems of heterogeneous catalysis. Angewandte Chemie 67:189–207CrossRefGoogle Scholar
  10. 10.
    Engell HJ, Hauffe K (1953) The boundary-film theory of chemisorption. Interpreting the reaction on the solid-gas interface (Die Randschichttheorie der Chemisorption . Ein Beitrag zur Deutung von Vorgängen an der Grenzfläche Festkörper/Gas). Zeitschrift fuer Elektrochemie und Angewandte Physikalische Chemie 57:762–73Google Scholar
  11. 11.
    Hauffe K (1955) Reaktionen in und an Festen Stoffen (Erste Auflage). Springer, Berlin, 696Google Scholar
  12. 12.
    Hauffe K (1966) Reaktionen in und an Festen Stoffen (Zweite Auflage). Springer, Berlin, 696Google Scholar
  13. 13.
    Kiselev VF, Krylov OV (1987) Electronic phenomena in adsorption and catalysis on semiconductors and dielectrics. Springer series in surface sciences, Springer, Berlin, 279Google Scholar
  14. 14.
    Roginskii SZ (1949) Principles of catalyst theory. Problemy Kinetiki i Kataliza 6:9–53Google Scholar
  15. 15.
    Wagner C (1950) The mechanism of the decomposition of nitrous oxide on zinc oxide as catalyst. J Chem Phys 18:69–71CrossRefGoogle Scholar
  16. 16.
    Bevan DJ, Anderson MJS (1950) electronic conductivityconductivity and surface equilibria of zinc oxide. Discussions of the Faraday society 8:238–246Google Scholar
  17. 17.
    Boudart M (1952) Electronic chemical potential in chemisorption and catalysis. J Am Chem Soc 74:1531–5CrossRefGoogle Scholar
  18. 18.
    Weisz PB (1953) Effects of electronic-charge transfer between adsorbate and solid on chemisorption and catalysis. J Chem Phys 21:1531–8CrossRefGoogle Scholar
  19. 19.
    Morrison SR (1953) Changes of surface conductivity of germanium with ambient. J Phys Chem 57:860–3CrossRefGoogle Scholar
  20. 20.
    Garrett CGB (1960) Quantitative considerations concerning catalysis at a semiconductor surface. J Chem Phys 33(4):966–979CrossRefGoogle Scholar
  21. 21.
    Brattain WH, Bardeen J (1953) Surface properties of germanium. Bell Sys Tech J 32:1–41Google Scholar
  22. 22.
    Engell HJ (1954) Randschichteffekte an der Grenzfläche Hableiter/Vakuum und Halbleiter/Gasraum. Halbleiterprobleme 1:249–272Google Scholar
  23. 23.
    Hauffe K (1956) Gas reactions on semiconducting surfaces and space charge boundary layers. In: Kingston RH (ed) Semiconductor surface physics, University of Pennsylvania Press, Philadelphia 259–282Google Scholar
  24. 24.
    Vol’kenshtein FF (1949) Electronic theory of promotion and poisoning of ionic catalysts. Problemy Kinetiki i Kataliza 6(Geterogennyi Kataliz):66–82Google Scholar
  25. 25.
    Morrison SR (1982) Semiconductor gas sensors. Sens Actuators 2(4):329–341Google Scholar
  26. 26.
    Kefeli A (1956) Sauerstoffnachweis in Gasen durch Leitfähigkeitsänderung eines Halbleiters (zno). Diploma Thesis, Institut für Angewandte Physik, Universität Erlangen, ErlangenGoogle Scholar
  27. 27.
    Heiland G (1982) Homogeneous semiconducting gas sensors. Sens Actuators 2(4):343–61Google Scholar
  28. 28.
    Heiland G (1957) Effect of hydrogen on the electrical conductivity on the surface of zinc oxide crystals (Zum Einfluss von Wasserstoff auf die elektrische Leitfähigkeit an der Oberfläche von Zinkoxydkristallen). Zeitschrift fuer Physik 148:15–27Google Scholar
  29. 29.
    Myasnikov IA (1957) The relation between the electric conductance and the adsorptive and sensitizing properties of zinc oxide. I. Electron phenomena in zinc oxide during adsorption of oxygen. Zhurnal Fizicheskoi Khimii 31:1721–30Google Scholar
  30. 30.
    Kupriyanov LY (1996) Semiconductor sensors in physico-chemical studies. In: Middelhoek S (ed) Handbook of sensors and actuators, vol 4. Elsevier, Amsterdam p 412Google Scholar
  31. 31.
    Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34:1502–1503CrossRefGoogle Scholar
  32. 32.
    Seiyama T, Kagawa S (1966) Detector for gaseous components with semiconductive thin films. Anal Chem 38(8):1069–73CrossRefGoogle Scholar
  33. 33.
    Taguchi N (1962) Gas-detecting device. Jpn Pat 45–38200Google Scholar
  34. 34.
    Chiba A (1992) Development of the TGS gas sensor. In: Yamauchi S (ed) Chemical sensor technology, Elsevier, Amsterdam pp 1–18Google Scholar
  35. 35.
    Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci 29(3–4):111–188CrossRefGoogle Scholar
  36. 36.
    Ihokura K, Watson J (1994) Stannic oxide gas sensors, principles and applications. CRC Press, Boca Raton p 187Google Scholar
  37. 37.
    Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167CrossRefGoogle Scholar
  38. 38.
    Barsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensorsgas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys-Condens Matter 15(20):813–839CrossRefGoogle Scholar
  39. 39.
    Gurlo A, Barsan N, Weimar U (2006) Gas sensors based on semiconducting metal oxidesmetal oxides. In: Fierro JLG (ed) Metal oxides: chemistry and applications, CRS Press, Boca Raton, pp 683–738Google Scholar
  40. 40.
    Ahlers S, Müller G, Doll T (2005) A rate equation approach to the gas sensitivity of thin film metal oxide materials. Sens Actuators, B: Chem 107(2):587–599CrossRefGoogle Scholar
  41. 41.
    Park CO, Akbar SA (2003) Ceramics for chemical sensing. J Mater Sci 38(23):4611–4637CrossRefGoogle Scholar
  42. 42.
    Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators, B: Chem 107(1):209–232Google Scholar
  43. 43.
    Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1):36–50CrossRefGoogle Scholar
  44. 44.
    Batzill M, Diebold U (2006) Characterizing solid state gas responses using surface charging in photoemission: water adsorption on SnO2(101). J Phys-Condens Matter 18(8):129–134CrossRefGoogle Scholar
  45. 45.
    Bell NA, Brooks JS, Forder SD, Robinson JK, Thorpe SC (2002) Backscatter Fe-57 Mossbauer studies of iron(II) phthalocyanine. Polyhedron 21(1):115–118CrossRefGoogle Scholar
  46. 46.
    Wolkenstein T (1969) Introduction. In: Hauffe K and Wolkenstein T (eds) Symposium on electronic phenomena in chemisorption and catalysis on semiconductors, Walter de Gruyter & Co, Berlin, pp 67–82Google Scholar
  47. 47.
    Weisz PB (1956) Bridges of physics and chemistry across the semiconductor surface. In: Kingston RH (ed) Semiconductor surface physics, University of Pennsylvania Press, Philadelphia, pp 247–258Google Scholar
  48. 48.
    Goepel W (1985) Entwicklung chemischer Sensoren: empirische Kunst oder systematische Forschung? Teil 2 (Development of chemical sensors: empirical art or systematic research? Part 2). Technisches Messen 52(3):92–105Google Scholar
  49. 49.
    Goepel W (1985) Entwicklung chemischer sensoren: empirische Kunst oder systematische Forschung? Teil 3 (Development of chemical sensors: empirical art or systematic research? Part 3). Technisches Messen 52(2):175–182Google Scholar
  50. 50.
    Goepel W (1985) Entwicklung chemischer sensoren: empirische Kunst oder systematische Forschung? (Development of chemical sensors: empirical art or systematic research?). Technisches Messen 52(5):175–82Google Scholar
  51. 51.
    Goepel W (1985) Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors. Prog Surf Sci 20(1):9–103CrossRefGoogle Scholar
  52. 52.
    Kohl D (1989) Surface processes in the detection of reducing gases with tin dioxide-based devices. Sens Actuators 18(1):71–113CrossRefGoogle Scholar
  53. 53.
    Kiselev VF, Krylov OV (1985) Adsorption processes on semiconductor and dielectric surfaces I. Springer series in chemical physics, 287Google Scholar
  54. 54.
    Fuller MJ, Warwick ME (1973) Catalytic oxidation of carbon monoxide on tin(IV) oxide. J Catal 29(3):441–50CrossRefGoogle Scholar
  55. 55.
    Thornton EW, Harrison PG (1975) Tin oxide surfaces. I Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxidecarbon monoxide on tin(IV) oxide. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 71(3):461–72Google Scholar
  56. 56.
    Harrison PG (1989) Tin(IV) Oxide: surface chemistry, catalysis and gas sensing. In: Harrison PG (ed) Chemistry of Tin, Blackie, GlasgowGoogle Scholar
  57. 57.
    Mizokawa Y, Nakamura S (1975) ESR and electric conductance studies of the fine powdered tin dioxide. Jpn J Appl Phys 14(6):779–88CrossRefGoogle Scholar
  58. 58.
    Che M, Tench AJ (1982) Characterization and reactivity of mononuclear oxygen species on oxide surfaces. Adv Catal 31:77–133CrossRefGoogle Scholar
  59. 59.
    Che M, Tench AJ (1983) Characterization and reactivity of molecular oxygen species on oxide surfaces. Adv Catal 32:1–148CrossRefGoogle Scholar
  60. 60.
    Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53(6):4448–4455CrossRefGoogle Scholar
  61. 61.
    Mizsei J, Harsanyi J (1983) Resistivity and work function measurements on Pd-doped SnO2 sensor surface. Sens Actuators 4:397–402CrossRefGoogle Scholar
  62. 62.
    Schierbaum KD, Weimar U, Goepel W, Kowalkowski R (1991) Conductance, work function and catalytic activity of SnO2-based gas sensors. Sens Actuators, B: Chem B3(3):205–214CrossRefGoogle Scholar
  63. 63.
    Gutierrez J, Ares L, Horillo MC, Sayago I, Agapito J, Lopez L (1991) Use of complex impedance spectroscopy in chemical sensor characterization. Sens Actuators B: Chem 4(3–4):359–363CrossRefGoogle Scholar
  64. 64.
    Mizsei J, Lantto V (1991) Simultaneous response of work function and resistivity of some SnO2-based samples to H2 and H2S. Sens Actuators B: Chem 4(1–2):163–168CrossRefGoogle Scholar
  65. 65.
    Kappler J (2001) Characterization of high-performance SnO2 gas sensorsgas sensors for CO detection by in-situin-situ techniques (Ph.D. Thesis, University of Tübingen) Aachen: Shaker VerlagGoogle Scholar
  66. 66.
    Oprea A, Moretton E, Barsan N, Becker WJ, Wollenstein J, Weimar U (2006) Conduction model of SnO2 thin films based on conductance and Hall effect measurements. J Appl Phys 100(3):033716CrossRefGoogle Scholar
  67. 67.
    Sahm T, Gurlo A, Barsan N, Weimar U (2006) Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens Actuators, B: Chem 118(1–2):78–83CrossRefGoogle Scholar
  68. 68.
    Sahm T, Gurlo A, Barsan N, Weimar U, Madler L (2005) Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements. Thin Solid Films 490(1):43–47CrossRefGoogle Scholar
  69. 69.
    Gurlo A, Barsan N, Oprea A, Sahm M, Sahm T, Weimar U (2004) An n- to p-type conductivity transition induced by oxygen adsorption on alpha-Fe2O3. Appl Phys Let 85(12):2280–2282CrossRefGoogle Scholar
  70. 70.
    Gurlo A, Sahm M, Oprea A, Barsan N, Weimar U (2004) A p- to n-transition on α-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens Actuators B-Chem 102(2):291–298CrossRefGoogle Scholar
  71. 71.
    Dunstan PR, Maffeis TGG, Ackland MP, Owen GT, Wilks SP (2003) The correlation of electronic properties with nanoscale morphological variations measured by SPM on semiconductor devices. J Phys Condens Matter 15(42):S3095−S3112Google Scholar
  72. 72.
    Maffeis TGG, Owen GT, Malagu C, Martinelli G, Kennedy MK, Kruis FE, Wilks SP (2004) Direct evidence of the dependence of surface state density on the size of SnO2 nanoparticles observed by scanning tunnelling spectroscopy. Surf Sci 550(1–3):21–25Google Scholar
  73. 73.
    Maffeis TGG, enny MP, Teng KS, Wilks SP, Ferkel HS, Owen GT (2004) Macroscopic and microscopic investigations of the effect of gas exposure on nanocrystalline SnO2 at elevated temperature. Appl Surf Sci 234(1–4):82–85CrossRefGoogle Scholar
  74. 74.
    Arbiol J, Gorostiza P, Cirera A, Cornet A, Morante JR (2001) In situ analysis of the conductance of SnO2 crystalline nanoparticles in the presence of oxidizing or reducing atmosphere by scanning tunneling microscopy. Sens Actuators B-Chem 78(1–3):57–63CrossRefGoogle Scholar
  75. 75.
    Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365(4):287–304CrossRefGoogle Scholar
  76. 76.
    Gurlo A, Riedel R (2007) In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angewandte Chemie—Int Edn 46(21):3826–3848Google Scholar
  77. 77.
    Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B-Cheml 121(1):18–35CrossRefGoogle Scholar
  78. 78.
    Windischmann H, Mark P (1979) A model for the operation of a thin-film tin oxide (SnOx) conductance-modulation carbon monoxide sensor. J Electrochem Soc 126(4):627–33CrossRefGoogle Scholar
  79. 79.
    Schulz M, Bohn E, Heiland G (1979) Messung von Fremdgasen in der Luft mit Halbleitersensoren (Measurement of extraneous gases in air by means of semiconducting sensors). Tech Messen 46(11):405–14Google Scholar
  80. 80.
    Williams DE (1987) Conduction and gas response of semiconductor gas sensors. In: Moseley PT and Totfield BC (eds) Solid state gas sensors, Adam Hilger, Philadelphia, pp 71–123Google Scholar
  81. 81.
    Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices. Academic Press, San Diego, p 556Google Scholar
  82. 82.
    Gas Sensors. Sberveglieri G (ed) 1992, Kluwer, Dordrecht, p 409Google Scholar
  83. 83.
    Jarzebski ZM, Marton JP (1976) Physical properties of tin(IV) oxide materials. II. Electrical properties. J Electrochem Soc 123(9):299–310CrossRefGoogle Scholar
  84. 84.
    Sahm T, Gurlo A, Barsan N, Weimar U (2005) Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. In Eurosensors XIX, European conference on solid-state transducers, BarcelonaGoogle Scholar
  85. 85.
    Tournier G, Pijolat C (1999) Influence of oxygen concentration in the carrier gas on the response of tin dioxide sensor under hydrogen and methane. Sens Actuators, B: Chem B61(1–3):43–50CrossRefGoogle Scholar
  86. 86.
    Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107(3):659–663CrossRefGoogle Scholar
  87. 87.
    Kalinin SV, Shin J, Jesse S, Geohegan D, Baddorf AP, Lilach Y, Moskovits M, Kolmakov A (2005) Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. J Appl Phys 98(4)Google Scholar
  88. 88.
    Szuber J, Czempik G, Larciprete R, Adamowicz B (2000) The comparative XPS and PYS studies of SnO2 thin films prepared by L-CVD technique and exposed to oxygen and hydrogen. Sens Actuators, B: Chem B70(1–3):177–181CrossRefGoogle Scholar
  89. 89.
    Figurovskaya EN, Kiselev VF, Vol’kenshtein FF (1965) Influence of chemisorption of oxygen on the work function and electrical conductivity of TiO2. Doklady Akademii Nauk SSSR 161(5):1142–1145Google Scholar
  90. 90.
    Kiselev VF (1967) Borderline between physical and chemical adsorption. Zeitschrift fuer Chemie 7(10):369–378CrossRefGoogle Scholar
  91. 91.
    Gopel W, Rocker G, Feierabend R (1983) Intrinsic defects of TiO2(110)—interaction with chemisorbed O2, H2, CO, and CO2. Phy Rev B 28(6):3427–3438Google Scholar
  92. 92.
    Heiland G (1954) Zum Einfluss von Wasserstoff auf die elektrische Leitfähigkeit von ZnO-Kristallen. Zeitschrift der Physik 138:459–464Google Scholar
  93. 93.
    Goepel W (1978) Reactions of oxygen with zinc oxide-(1010) surfaces. J Vac Sci Technol 15(4):1298–310CrossRefGoogle Scholar
  94. 94.
    Fujitsu S, Koumoto K, Yanagida H, Watanabe Y, Kawazoe H (1999) Change in the oxidation state of the adsorbed oxygen equilibrated at 25 °C on ZnO surface during room temperature annealing after rapid quenching. Jpn J Appl Phys Part 1: Regular papers, Short notes and review papers 38(3A):1534–1538Google Scholar
  95. 95.
    Na BK, Walters AB, Vannice MA (1993) Studies of gas adsorptiongas adsorption on zinc oxide using ESR, FTIR spectroscopy, and MHE (microwave Hall effect) measurements. J Catal 140(2):585–600CrossRefGoogle Scholar
  96. 96.
    Kiselev VF, Krylov OV (1987) Springer series in surface sciences, electronic phenomena in adsorption and catalysis on semiconductors and dielectrics. 7:279Google Scholar
  97. 97.
    McAleer JF, Moseley PT, Norris JOW, Williams DE (1987) Tin dioxide gas sensors. Part 1. Aspects of the surface chemistry revealed by electrical conductance variations. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 83(4):1323–1346Google Scholar
  98. 98.
    Harrison PG, Willett MJ (1989) Tin oxide surfaces. 20. Electrical properties of tin(IV) oxide gel: nature of the surface conductance in air as a function of temperature. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 85(8):1921–1932Google Scholar
  99. 99.
    Willett MJ (1991) Spectroscopy of surface reactions In: Moseley PT, Norris JO and Williams DE (eds) Techiques and mecahnism in gas sensing, Adam Hilger, Bristol, pp 61–107Google Scholar
  100. 100.
    Pulkkinen U, Rantala TT, Rantala TS, Lantto V (2001) Kinetic Monte Carlo simulation of oxygen exchange of SnO2 surface. J Mol Catal A: Chem 166(1):15–21CrossRefGoogle Scholar
  101. 101.
    Lantto V, Romppainen P (1987) Electrical studies on the reactions of carbon monoxide with different oxygen species on tin dioxide surfaces. Surf Sci 192(1):243–264CrossRefGoogle Scholar
  102. 102.
    Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592CrossRefGoogle Scholar
  103. 103.
    Oprea A, Gurlo A, Barsan N, Weimar U (2009) Transport and gas sensing properties of In2O3 nanocrystalline thick films: a hall effect based approach. Sens Actuators B-Chem 139(2):322–328CrossRefGoogle Scholar
  104. 104.
    Geistlinger H (1993) Electron theory of thin-film gas sensors Sens Actuators, B: Chem 17(1):47–60CrossRefGoogle Scholar
  105. 105.
    Geistlinger H, Eisele I, Flietner B, Winter R (1996) Dipole- and charge transfer contributions to the work function change of semiconducting thin films: experiment and theory. Sens Actuators, B: Chem B34(1–3):499–505CrossRefGoogle Scholar
  106. 106.
    Rothschild A, Komem Y (2003) Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors. Sens Actuators B-Chem 93(1–3):362–369CrossRefGoogle Scholar
  107. 107.
    Gurlo A, Barsan N, Ivanovskaya M¸Weimar U, Gopel W (1998) In2O3 and MoO3-In2O3 thin film semiconductor sensors: interaction with NO2 and O3. Sens Actuators B-Chem 47(1–3):92–99CrossRefGoogle Scholar
  108. 108.
    Wahlstrom E, Vestergaard EK, Schaub R, Ronnau A, Vestergaard M, Laegsgaard E, Stensgaard I, Besenbacher F (2004) Electron transfer-induced dynamics of oxygen molecules on the TiO2(110) surface. Science 303(5657):511–513CrossRefGoogle Scholar
  109. 109.
    Gurlo A (2006) Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence of adsorbed oxygen. ChemPhysChem 7:2041–2052CrossRefGoogle Scholar
  110. 110.
    Henderson MA, Epling WS, Perkins CL, Peden CHF, Diebold U (1999) Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface: molecular and dissociative channels. J Phys Chem B 103(25):5328–5337CrossRefGoogle Scholar
  111. 111.
    Bartolucci F, Franchy R, Barnard JC, Palmer RE (1998) Two chemisorbed species of O2 on Ag(110). Phys Rev Lett 80(23):5224–5227CrossRefGoogle Scholar
  112. 112.
    Iwamoto M, Yoda Y, Yamazoe N, Seiyama T (1978) Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides. J Phys Chem 82(24):2564–2570CrossRefGoogle Scholar
  113. 113.
    Tanaka K, Blyholder G (1972) Adsorbed oxygen species on zinc oxide in the dark and under illumination. J Phys Chem 76(22):3184–7CrossRefGoogle Scholar
  114. 114.
    Zemel JN (1988) Theoretical description of gas-film interaction on tin oxide (SnOx). Thin Solid Films 163:189–202CrossRefGoogle Scholar
  115. 115.
    Kolmakov A, Moskovits M (2004) Chemical sensing and catalysiscatalysis by one-dimensional metal-oxide nanostructures. Ann Rev Mater Res 34:151–180CrossRefGoogle Scholar
  116. 116.
    Maier J, Gopel W (1998) Investigations of the bulk defect chemistry of polycrystalline tin(IV) oxide. J Solid State Chem 72(2):293–302CrossRefGoogle Scholar
  117. 117.
    Gopel W, Schierbaum K, Wiemhofer HD, Maier J (1989) Defect chemistry of tin(IV)-oxide in bulk and boundary-layers. Solid State Ionics 32(3):440–443CrossRefGoogle Scholar
  118. 118.
    Kamp B, Merkle R, Lauck R, Maier J (2005) Chemical diffusion of oxygen in tin dioxide: Effects of dopantsdopants and oxygen partial pressure. J Solid State Chem 178(10):3027–3039CrossRefGoogle Scholar
  119. 119.
    Kamp B, Merkle R, Maier J (2001) Chemical diffusion of oxygen in tin dioxide. Sens Actuators, B: Chem B77(1–2):534–542CrossRefGoogle Scholar
  120. 120.
    Armelao L, Barreca D, Bontempi E, Canevali C, Depero LE, Mari CM, Ruffo R, Scotti R, Tondello E, Morazzoni F (2002) Can electron paramagnetic resonance measurements predict the electrical sensitivity of SnO2-based film? Appl Magn Reson 22(1):89–100CrossRefGoogle Scholar
  121. 121.
    Safonova O, Bezverkhy I, Fabrichnyi P, Rumyantseva M, Gaskov A (2002) Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mossbauer spectroscopy and conductance measurements. J Mater Chem 12(4):1174–1178CrossRefGoogle Scholar
  122. 122.
    Morandi S, Ghiotti G, Chiorino A, Comini E (2005) FT-IR and UVUV-Vis-NIR characterisation of pure and mixed MoO3 and WO3 thin films. Thin Solid Films 490(1):74–80CrossRefGoogle Scholar
  123. 123.
    Lenaerts S, Roggen J, Maes G (1995) FT-IR characterization of tin dioxide gas sensor materials under working conditions. Spectrochim Acta Part A Mol Biomol Spectrosc 51A(5):883–894CrossRefGoogle Scholar
  124. 124.
    Pohle R, Fleischer M, Meixner H (2001) Infrared emission spectroscopic study of the adsorption of oxygen on gas sensors based on polycrystalline metal oxide films. Sens Actuators B-Chem 78(1–3):133–137CrossRefGoogle Scholar
  125. 125.
    Sergent N, Gelin P, Perier-Camby L, Praliaud H, Thomas G (2003) Study of the interactions between carbon monoxide and high specific surface area tin dioxide: Thermogravimetric analysis and FTIR spectroscopy. J Therm Anal Calorim 72(3):1117–1126CrossRefGoogle Scholar
  126. 126.
    Koziej D, Barsan N, Weimar U, Szuber J, Shimanoe K, Yamazoe N (2005) Water-oxygen interplay on tin dioxide surface: implication on gas sensing. Chem Phys Lett 410(4–6):321–323CrossRefGoogle Scholar
  127. 127.
    Di Nola P, Morazzoni F, Scotti R, Narducci D (1993) Paramagnetic point defects in tin dioxide and their reactivity with surrounding gases. Part 1—interaction of oxygen lattice centers with vapor-phase water, air, inert and combustible gases, as revealed by electron paramagnetic resonance spectroscopy. J Chem Soc, Faraday Trans 89(20):3711–3713CrossRefGoogle Scholar
  128. 128.
    Lenaerts S, Honore M, Huyberechts G, Roggen J, Maes G (1994) In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K. Sens Actuators, B: Chem 19(1–3):478–482CrossRefGoogle Scholar
  129. 129.
    Ghiotti G, Chiorino A, Boccuzzi F (1989) Infrared study of surface chemistry and electronic effects of different atmospheres on tin dioxide. Sens Actuators 19(2):151–7CrossRefGoogle Scholar
  130. 130.
    Harbeck S (2005) Characterisation and functionality of SnO2 gas sensors using vibrational spectroscopy. Ph.D. thesis, Faculty of Chemistry, Universität tübingen,, Tuebingen
  131. 131.
    Fonstad CG, Rediker RH (1971) Electrical properties of high-quality stannic oxide crystals. J Appl Phys 42(7):2911–2918CrossRefGoogle Scholar
  132. 132.
    Samson S, Fonstad CG (1973) Defect structure and electronic donordonor levels in stannic oxide crystals. J Appl Phys 44(10):4618–4621CrossRefGoogle Scholar
  133. 133.
    Lopez N, Prades JD, Hernandez-Ramirez F, Morante JR, Pan J, Mathur S (2010) Bidimensional versus tridimensional oxygen vacancy diffusion in SnO2-x under different gas environments. Phys Chem Chem Phys 12(10):2401–2406CrossRefGoogle Scholar
  134. 134.
    Hernandez-Ramirez F, Prades JD, Tarancon A¸Barth S, Casals O, Jimenez-Diaz R, Pellicer E¸Rodriguez J, Morante JR, Juli MA, Mathur S, Romano-Rodriguez A (2008) Insight into the role of oxygen diffusion in the sensing mechanisms of SnO2 nanowires. Adv Funct Mater 18(19):2990–2994CrossRefGoogle Scholar
  135. 135.
    Boreskov GK (1964) The catalysis of isotopic exchange in molecular oxygen. Adv Catal 15:285–339CrossRefGoogle Scholar
  136. 136.
    Safonova OV, Neisius T, Ryzhikov A, Chenevier B, Gaskov AM, Labeau M (2005) Characterization of the H2 sensing mechanism of Pd-promoted SnO2 by XAS in operando conditions. Chem Commun 41:5202–5204CrossRefGoogle Scholar
  137. 137.
    Schmid W, Barsan N, Weimar U (2003) Sensing of hydrocarbons with tin oxide sensors: possible reaction path as revealed by consumption measurements. Sens Actuators B-Chem 89(3):232–236CrossRefGoogle Scholar
  138. 138.
    Delabie L, Honore M, Lenaerts S, Huyberechts G, Roggen J, Maes G (1997) The effect of sintering and Pd-doping on the conversion of CO to CO2 on SnO2 gas sensor materials. Sens Actuators B-Chem 44(1–3):446–451CrossRefGoogle Scholar
  139. 139.
    Dutta PK, De Lucia MF (2006) Correlation of catalytic activity and sensor response in TiO2 high temperature gas sensors. Sens Actuators, B: Chem 115(1):1–3CrossRefGoogle Scholar
  140. 140.
    Schmid W, Barsan N, Weimar U (2004) Sensing of hydrocarbons and CO in low oxygen conditions with tin dioxide sensors: possible conversion paths. Sens Actuators B-Chem 103(1–2):362–368CrossRefGoogle Scholar
  141. 141.
    Hahn SH, Barsan N, Weimar U, Ejakov SG, Visser JH, Soltis RE (2003) CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films 436(1):17–24CrossRefGoogle Scholar
  142. 142.
    Gurlo A, Sahm M, Oprea A, Barsan N, Weimar U (2004) A p- to n-transition on alpha-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens Actuators B-Chem 102(2):291–298CrossRefGoogle Scholar
  143. 143.
    Gurlo A, Barsan N, Oprea A, Sahm M, Sahm T, Weimar U (2004) An n- to p-type conductivity transition induced by oxygen adsorption on alpha-Fe2O3. Appl Phys Lett 85(12):2280–2282CrossRefGoogle Scholar
  144. 144.
    Arulsamy AD, Elersic K, Modic M, Cvelbar U, Mozetic M (2010) Reversible carrier-type transitions in gas-sensing oxides and nanostructures. Chem Phys Chem 11(17):3704–3712CrossRefGoogle Scholar
  145. 145.
    Gurlo A (2006) Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. Chem Phys Chem 7(10):2041–2052CrossRefGoogle Scholar
  146. 146.
    Hahn S (2002) SnO2 thick film sensors at ultimate limits: performance at low O2 and H2O concentrations. Size reduction by CMOS technology, Ph.D. thesis, Faculty of Chemistry, Universität Tübingen, TuebingenGoogle Scholar
  147. 147.
    Benitez JJ, Centeno MA, Merdrignac OM¸Guyader J, Laurent YJ, Odriozola A (1995) DRIFTS chamber for in situ and simultaneous study of infrared and electrical response of sensors. Appl Spectrosc 49(8):1094–6CrossRefGoogle Scholar
  148. 148.
    Benitez JJ, Centeno MA, dit Picard CL, Merdrignac O, Laurent Y, Odriozola JA (1996) In situ diffuse reflectance infrared spectroscopy (DRIFTS) study of the reversibility of CdGeON sensors towards oxygen. Sens Actuators, B: Chem B31(3):197–202Google Scholar
  149. 149.
    Safonova OV, Neisius T, Chenevier B, Matko I, Labeau M, Gaskov A (2004) In situ XAS studies on the effect of Pd and Pt clusters on the mechanism of SnO2 based gas sensors. In 13th international congress on catalysis, Paris, France, July 2004Google Scholar
  150. 150.
    Gaidi M, Chenevier B, Labeau M, Hazemann JL In situ simultaneous XAS and electrical characterizations of Pt-doped tin oxide thin film deposited by pyrosol method for gas sensors application. Sens Actuators, B: Chem B120(1):313–315 Google Scholar
  151. 151.
    Gaidi M, Labeau M, Chenevier B, Hazemann JL (1998) In situ EXAFS analysis of the local environment of Pt particles incorporated in thin films of SnO2 semi-conductor oxide used as gas-sensors. Sens Actuators B-Chem 48(1–3):277–284CrossRefGoogle Scholar
  152. 152.
    Gaidi M, Hazemann JL, Matko I, Chenevier B, Rumyantseva M, Gaskov A, Labeau M (2000) Role of Pt aggregates in Pt/SnO2 thin films used as gas sensors—investigations of the catalytic effect. J Electrochem Soc 147(8):3131–3138CrossRefGoogle Scholar
  153. 153.
    Sharma SS, Nomura K, Ujihira Y (1992) Moessbauer studies on tin-bismuth oxide carbon monoxide selective gas sensor. J Appl Phys 71(4):2000–5CrossRefGoogle Scholar
  154. 154.
    Nomura K, Sharma SS, Ujihira Y (1993) Characterization of tin oxide films gas sensor by in situ conversion electron Moessbauer spectrometry (CEMS). Nucl Instrum Methods Phys Res, Sect B B76(1–4):357–9CrossRefGoogle Scholar
  155. 155.
    Baraton M.-I, Merhari L (2005) Investigation of the gas detection mechanism in semiconductor chemical sensors by FTIR spectroscopy. Synth React Inorg, Met-Org, Nano-Met Chem 35(10):733–742CrossRefGoogle Scholar
  156. 156.
    Baraton M-I, Merhari L (2004) Nanoparticles-based chemical gas sensors for outdoor air quality monitoring. Nano-Micro Interface 227–238Google Scholar
  157. 157.
    Baraton M-I (1996) FT-IR surface study of nanosized ceramic materials used as gas sensors. Sens Actuators, B: Chem B31(1–2):33–8CrossRefGoogle Scholar
  158. 158.
    Baraton MI (1994) Infrared and Raman characterization of nanophase ceramic materials. High Temp Chem Processes 3:545–554Google Scholar
  159. 159.
    Baraton MI, Merhari L, Ferkel H, Castagnet JF (2002) Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: carbon monoxide and oxygen detection. Mater Sci Eng C-Biomimetic Supramolecular Syst 19(1–2):315–321CrossRefGoogle Scholar
  160. 160.
    Baraton MI, Merhari L, Keller P, Zweiacker K, Meyer JU (1999) Novel electronic conductance CO2 sensors based on nanocrystalline semiconductors. Materials research society symposium proceedings, (Microcrystalline and Nanocrystalline Semiconductors–1998) 536:341–346Google Scholar
  161. 161.
    Chiorino A, Ghiotti G, Prinetto F, Carotta MC¸Malagu C, Martinelli G (2001) Preparation and characterization of SnO2 and WOx-SnO2 nanosized powders and thick films for gas sensing. Sens Actuators, B: Chem B78(1–3):89–97CrossRefGoogle Scholar
  162. 162.
    Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Gallana M, Martinelli G (1999) Characterization of materials for gas sensors. Surface chemistry of SnO2 and MoOx-SnO2 nano-sized powders and electrical responses of the related thick films. Sens Actuators B-Chem 59(2–3):203–209Google Scholar
  163. 163.
    Chiorino A, Ghiotti G, Carotta MC, Martinelli G (1998) Electrical and spectroscopic characterization of SnO2 and Pd-SnO2 thick films studied as CO gas sensors. Sens Actuators, B: Chem B47(1–3):205–212CrossRefGoogle Scholar
  164. 164.
    Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Martinelli G, Merli M (1997) Characterization of SnO2-based gas sensors a spectroscopic and electrical study of thick films from commercial and laboratory-prepared samples. Sens Actuators, B Chem B 44(1–3):474–482CrossRefGoogle Scholar
  165. 165.
    Popescu DA, Herrmann JM, Ensuque A, Bozon-Verduraz F (2001) Nanosized tin dioxide: spectroscopic (UV-VIS, NIR, EPR) and electrical conductivity studies Phys Chem Chem Phys 3(12):2522–2530CrossRefGoogle Scholar
  166. 166.
    Canevali C, Mari CM, Mattoni M, Morazzoni F, Ruffo R, Scotti R, Russo U, Nodari L (2004) Mechanism of sensing NO in argon by nanocrystalline SnO2: electron paramagnetic resonance, Mossbauer and electrical study. Sens Actuators, B: Chem B100(1–2):228–235CrossRefGoogle Scholar
  167. 167.
    Canevali C, Mari CM, Mattoni M, Morazzoni F, Nodari L, Ruffo R, Russo U, Scotti R (2005) Interaction of NO with nanosized Ru-, Pd-, and Pt-doped SnO2: electron paramagnetic resonance, Mossbauer, and electrical investigation. J Phys Chem B 109(15):7195–7202CrossRefGoogle Scholar
  168. 168.
    Morazzoni F, Canevali C, Chiodini N, Mari C, Ruffo R, Scotti R, Armelao L, Tondello E, Depero LE, Bontempi E (2001) Nanostructured Pt-doped tin oxide films: sol-gel preparation, spectroscopic and electrical characterization. Chem Mater 13(11):4355–4361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Fachbereich Material- und GeowissenschaftenTechnische Universitaet DarmstadtDarmstadtGermany

Personalised recommendations