A Multiscale Method Coupling Network and Continuum Models in Porous Media II—Single- and Two-Phase Flows

  • Jay ChuEmail author
  • Björn Engquist
  • Maša Prodanović
  • Richard Tsai
Part of the Fields Institute Communications book series (FIC, volume 66)


We present a numerical multiscale method for coupling mass conservation laws at the continuum scale with a discrete, pore scale network model for two-phase flow in porous media. Our previously developed single-phase flow algorithm is extended to two-phase flows, for the situations in which the saturation profile go through a sharp transition from fully saturated to almost unsaturated states. Our method evaluates the continuum equation by simulations using small representative networks centering at different physical locations, and thereby computes the effective dynamics of the two phase flow at the continuum scale. On the other hand, the initial and boundary data for the network simulations are determined by the variables used in the continuum model. We present numerical results for single-phase flows with nonlinear flux-pressure dependence, as well as two-phase flows.


Capillary Pressure Dirichlet Boundary Condition Pore Body Pore Scale Dual Porosity Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Chu and Tsai are partially supported by NSF DMS-0714612, and NSF DMS-0914840.


  1. 1.
    T. Arbogast. Gravitational forces in dual-porosity systems: 1. Model derivation by homogenization. Transp. Porous Media, 13(2) (1993), 179–203. CrossRefGoogle Scholar
  2. 2.
    T. Arbogast. Gravitational forces in dual-porosity systems: 2. Computational validation of the homogenized model. Transp. Porous Media, 13(2) (1993), 205–220. CrossRefGoogle Scholar
  3. 3.
    T. Arbogast, L.C. Cowsar, M.F. Wheeler, and I. Yotov. Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer. Anal., 37(4) (2000), 1295–1315. MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M.T. Balhoff, K.E. Thompson, and M. Hjortso. Coupling pore-scale networks to continuum-scale models of porous media. Comput. Geosci., 33(3) (2007), 393–410. CrossRefGoogle Scholar
  5. 5.
    M. Balhoff, S. Thomas, and M. Wheeler. Mortar coupling and upscaling of pore-scale models. Comput. Geosci., 12 (2008), 15–27. doi: 10.1007/s10596-007-9058-6. MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M.J. Blunt. Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci., 6 (2001), 197–207. CrossRefGoogle Scholar
  7. 7.
    M.J. Blunt, M.D. Jackson, M. Piri, and P.H. Valvatne. Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour., 25 (2002), 1069–1089. CrossRefGoogle Scholar
  8. 8.
    S.L. Bryant, P.R. King, and D.W. Mellor. Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp. Porous Media, 11 (1993), 53–70. CrossRefGoogle Scholar
  9. 9.
    M.A. Celia, P.C. Reeves, and L.A. Ferrand. Recent advances in pore-scale models for multiphase flow in porous media. Rev. Geophys. Suppl., 33 (1995), 1049–1057. CrossRefGoogle Scholar
  10. 10.
    Y. Chen and L.J. Durlofsky. An adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media, 62 (2006), 157–185. MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Chen and L.J. Durlofsky. Efficient incorporation of global effects in upscaled models of two-phase flow and transport in heterogeneous formations. SIAM MMS, 5 (2006), 445–475. MathSciNetzbMATHGoogle Scholar
  12. 12.
    Y. Chen, L.J. Durlofsky, M. Gerritsen, and X.H. Wen. A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour., 26 (2003), 1041–1060. CrossRefGoogle Scholar
  13. 13.
    Z. Chen, G. Huan, and Y. Ma. Computational methods for multiphase flows in porous media. Computational Science & Engineering. SIAM, Philadelphia, 2006. zbMATHCrossRefGoogle Scholar
  14. 14.
    J. Chu, B. Engquist, M. Prodanović, and R. Tsai. A multiscale method coupling network and continuum models in porous media I—steady state single phase flow. To appear in SIAM Multiscale Model. Simul. doi: 10.1137/110836201.
  15. 15.
    A.B. Dixit, J.S. Buckley, S.R. McDougall, and K.S. Sorbie. Empirical measures of wettability in porous media and the relationship between them derived from pore-scale modelling. Transp. Porous Media, 40 (2000), 27–54. CrossRefGoogle Scholar
  16. 16.
    L.J. Durlofsky, Y. Efendiev, and V. Ginting. An adaptive local-global multiscale finite volume element method for two-phase flow simulations. Adv. Water Resour., 30 (2007), 576–588. CrossRefGoogle Scholar
  17. 17.
    W. E and B. Engquist. The heterogeneous multi-scale methods. Commun. Math. Sci., 1(1) (2003), 87–133. MathSciNetzbMATHGoogle Scholar
  18. 18.
    Y. Efendiev, V. Ginting, T.Y. Hou, and R. Ewing. Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys., 220(1) (2006), 155–174. MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Y. Efendiev and T.Y. Hou. Multiscale finite element methods: theory and applications. Springer, New York, 2009. zbMATHGoogle Scholar
  20. 20.
    B. Engquist, R. Caflisch, and Y. Sun. A multiscale method for epitaxial growth. SIAM MMS, 9(1) (2011), 335–354. MathSciNetzbMATHGoogle Scholar
  21. 21.
    B. Engquist and Y. Sun. Heterogeneous multiscale methods for interface tracking of combustion fronts. SIAM MMS, 5(2) (2006), 532–563. MathSciNetzbMATHGoogle Scholar
  22. 22.
    I. Fatt. The network model of porous media I. Capillary characteristics. Pet. Trans. AIME, 207 (1956), 144–159. Google Scholar
  23. 23.
    I. Fatt. The network model of porous media II. Dynamic properties of a single size tube network. Pet. Trans. AIME, 207 (1956), 160–163. Google Scholar
  24. 24.
    I. Fatt. The network model of porous media III. Dynamic properties of networks with tube radius distribution. Pet. Trans. AIME, 207 (1956), 164–181. Google Scholar
  25. 25.
    P. Forchheimer. Hydrolik. Teubner, Leipzig, 1914. Google Scholar
  26. 26.
    V. Joekar-Niasar, S.M. Hassanizadeh and H.K. Dahle. Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling. J. Fluid Mech., 655 (2010), 38–71. MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    M. Karimi-Fard, B. Gong, and L. J. Durlofsky. Generation of coarse-scale continuum flow models from detailed fracture characterization. Water Resour. Res., 42(10) (2006). doi: 10.1029/2006WR005015. CrossRefGoogle Scholar
  28. 28.
    J.E. Olson, S.E. Laubach, and R.H. Lander. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis. Am. Assoc. Pet. Geol. Bull., 93(11) (2009), 1535–1549. Google Scholar
  29. 29.
    P.E. Oren and S. Bakke. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J. Pet. Sci. Eng., 39 (2003), 177–199. CrossRefGoogle Scholar
  30. 30.
    V. Joekar-Niasar, M. Prodanović, D. Wildenschild, and S.M. Hassanizadeh. Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resour. Res., 46(6) (2010), WR008585. CrossRefGoogle Scholar
  31. 31.
    P.C. Reeves and M.A. Celia. A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore scale network model. Water Resour. Res., 32 (1996), 2345–2358. CrossRefGoogle Scholar
  32. 32.
    F.D. Rossa, C. D’Angelo, and A. Quarteroni. A distributed model of traffic flows on extended regions. Netw. Heterog. Media, 5(3) (2010), 525–544. MathSciNetCrossRefGoogle Scholar
  33. 33.
    F. Thauvin and K.K. Mohanty. Network modeling of non-darcy flow through porous media. Transp. Porous Media, 31 (1998), 19–37. CrossRefGoogle Scholar
  34. 34.
    K.E. Thompson. Pore-scale modelling of fluid transport in disordered fibrous materials. AIChE J., 48 (2002), 1369–1389. CrossRefGoogle Scholar
  35. 35.
    P.H. Valvatne and M.J. Blunt. Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res., 40 (2004). doi: 10.1029/2003WR002627.
  36. 36.
    M.I.J. van Dijke, K.S. Sorbie, and S.R. McDougall. Saturation-dependencies of three-phase relative permeabilities in mixed-wet and fractionally wet systems. Adv. Water Resour., 24 (2001), 365–384. CrossRefGoogle Scholar
  37. 37.
    X. Wang and K.K. Mohanty. Pore-network model of flow in gas-condensate reservoirs. SPE J., 5 (2000), 426–434. Google Scholar
  38. 38.
    S. Whitaker. Flow in porous media i: a theoretical derivation of Darcy’s law. Transp. Porous Media, 1 (1986), 3–25. CrossRefGoogle Scholar
  39. 39.
    S. Youssef, M. Han, D. Bauer, E. Rosenberg, S. Bekri, M. Fleury, and O. Vizika. High resolution μCT combined to numerical models to assess electrical properties of bimodal carbonates. Abu Dhabi, UAE, 29 October–2 November, 2008. Google Scholar
  40. 40.
    D. Zhou, M.J. Blunt, and F.M. Orr. Hydrocarbon drainage along corners of noncircular capillaries. J. Colloid Interface Sci., 187 (1997), 11–21. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jay Chu
    • 1
    Email author
  • Björn Engquist
    • 1
    • 2
  • Maša Prodanović
    • 3
    • 4
  • Richard Tsai
    • 1
    • 2
  1. 1.Department of MathematicsThe University of Texas at AustinAustinUSA
  2. 2.ICESThe University of Texas at AustinAustinUSA
  3. 3.Department of Petroleum and Geosystems EngineeringThe University of Texas at AustinAustinUSA
  4. 4.CPGEThe University of Texas at AustinAustinUSA

Personalised recommendations