Skip to main content

Part of the book series: Fields Institute Communications ((FIC,volume 66))

Abstract

Recently more and more disciplines of science and engineering have found Random Matrix Theory valuable. Some disciplines use the limiting densities to indicate the cutoff between “noise” and “signal.” Other disciplines are finding eigenvalue repulsions a compelling model of reality. This survey introduces both the theory behind these applications and matlab experiments allowing a reader immediate access to the ideas.

Note to our readers: This survey paper is in large part a precursor to a book on Random Matrix Theory that will be forthcoming. We reserve the right to reuse materials in the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the random variables should be written x ij (n).

  2. 2.

    If the x ij (n) are identically distributed, a very common assumption, then it is sufficient to require finite moments.

References

  1. J.T. Albrecht, C.P. Chan, and A. Edelman. Sturm sequences and random eigenvalue distributions. Foundations of Computational Mathematics, 9(4):461–483, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  2. G.W. Anderson, A. Guionnet, and O. Zeitouni. An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118, 2010.

    MATH  Google Scholar 

  3. Z.D. Bai. Convergence rate of expected spectral distributions of large random matrices. Part II. Sample covariance matrices. Annals of Probability, 21:649–672, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  4. Z.D. Bai. Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices. The Annals of Probability, 625–648, 1993.

    Google Scholar 

  5. Z. Bai and J. Silverstein. Spectral Analysis of Large Dimensional Random Matrices, 2nd edn. Science Press, Beijing, 2010.

    Book  MATH  Google Scholar 

  6. O.E. Barndorff-Nielsen and S. Thorbjørnsen. Lévy laws in free probability. Proceedings of the National Academy of Sciences, 99(26):16568, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Couillet and M. Debbah. Random Matrix Methods for Wireless Communications. Cambridge University Press, Cambridge, 2011.

    Book  MATH  Google Scholar 

  8. V. Dahirel, K. Shekhar, F. Pereyra, T. Miura, M. Artyomov, S. Talsania, T.M. Allen, M. Altfeld, M. Carrington, D.J. Irvine, et al. Coordinate linkage of hiv evolution reveals regions of immunological vulnerability. Proceedings of the National Academy of Sciences, 108(28):11530, 2011.

    Article  Google Scholar 

  9. I. Dumitriu. Eigenvalue statistics for beta-ensembles. Ph.D. thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 2003.

    Google Scholar 

  10. A. Edelman and N.R. Rao. Random matrix theory. Acta Numerica, 14(233–297):139, 2005.

    MathSciNet  Google Scholar 

  11. A. Edelman. The random matrix technique of ghosts and shadows. Markov Processes and Related Fields, 16(4):783–790, 2010.

    MathSciNet  MATH  Google Scholar 

  12. P.J. Forrester. Log-Gases and Random Matrices, vol. 34. Princeton University Press, Princeton, 2010.

    MATH  Google Scholar 

  13. V.L. Girko. Circular law. Teoriya Veroyatnostei I Ee Primeneniya, 29:669–679, 1984.

    MathSciNet  MATH  Google Scholar 

  14. V.A. Marčenko and L.A. Pastur. Distribution of eigenvalues for some sets of random matrices. Mathematics of the USSR-Sbornik, 1:457, 1967.

    Article  Google Scholar 

  15. M.L. Mehta. Random Matrices, vol. 142. Academic Press, San Diego, 2004.

    MATH  Google Scholar 

  16. F. Mezzadri and N.C. Snaith. Recent Perspectives in Random Matrix Theory and Number Theory. Cambridge University Press, Cambridge, 2005.

    Book  MATH  Google Scholar 

  17. R.J. Muirhead. Aspects of Multivariate Statistical Theory. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1982.

    Book  MATH  Google Scholar 

  18. A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. Cambridge University Press, New York, 2006.

    Book  MATH  Google Scholar 

  19. D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica, 17(4):1617, 2007.

    MathSciNet  MATH  Google Scholar 

  20. S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A.C. Boccara, and S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Physical Review Letters, 104(10):100601, 2010.

    Article  Google Scholar 

  21. P. Šeba. Parking and the visual perception of space. Journal of Statistical Mechanics: Theory and Experiment, 2009:L10002, 2009.

    Article  Google Scholar 

  22. B.D. Sutton. The stochastic operator approach to random matrix theory. Ph.D. thesis, Massachusetts Institute of Technology, 2005.

    Google Scholar 

  23. K.A. Takeuchi and M. Sano. Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Physical review letters, 104(23):230601, 2010.

    Article  Google Scholar 

  24. E.P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Annals of Mathematics, 62:548–564, 1955.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported in part by DMS 1035400 and DMS 1016125.

We acknowledge many of our colleagues and friends, too numerous to mention here, whose work has formed the basis of Random Matrix Theory. We particularly thank Raj Rao Nadakuditi for always bringing the latest applications to our attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edelman, A., Wang, Y. (2013). Random Matrix Theory and Its Innovative Applications. In: Melnik, R., Kotsireas, I. (eds) Advances in Applied Mathematics, Modeling, and Computational Science. Fields Institute Communications, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5389-5_5

Download citation

Publish with us

Policies and ethics