Bioinspiration pp 331-378 | Cite as

Superhydrophobic Surfaces: Beyond Lotus Effect

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


The term of lotus effect represents the superhydrophobic property of lotus leaves. The super water repellency endows self-cleaning function to lotus leaves, on which dirt particles are easily removed by raindrops. This phenomenon generates increasing interest for both fundamental research and practical applications. Integrated with up-to-date science and technology, superhydrophobic surfaces have been widely applied in industrial innovation and microengineering. In this review, after a brief overview on basic characterization of the superhydrophobic surface, the principle of its fabrication method and varied preparing technologies are introduced. Then, beyond the lotus effect, we will discuss the techniques applied on the modification of wetting behavior on superhydrophobic surface as well as multifunctional superhydrophobic surfaces derived from conventional ones.


Contact Angle Water Droplet Water Contact Angle Anodic Aluminum Oxide Lower Critical Solution Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Li, Y., Zhang, J., Zhu, S., Dong, H., Jia, F., Wang, Z., Sun, Z., Zhang, L., Li, Y., Li, H., Xu, W., Yang, B.: Biomimetic surfaces for high-performance optics. Adv. Mater. 21(46), 4731–4734 (2009)Google Scholar
  2. 2.
    Yuan, J.K., Liu, X.G., Akbulut, O., Hu, J.Q., Suib, S.L., Kong, J., Stellacci, F.: Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 3(6), 332–336 (2008)ADSGoogle Scholar
  3. 3.
    Parker, A.R., Lawrence, C.R.: Water capture by a desert beetle. Nature 414(6859), 33–34 (2001)ADSGoogle Scholar
  4. 4.
    Dorvee, J.R., Derfus, A.M., Bhatia, S.N., Sailor, M.J.: Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat. Mater. 3(12), 896–899 (2004)ADSGoogle Scholar
  5. 5.
    Lee, H., Lee, B.P., Messersmith, P.B.: A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151), 338–341 (2007). U4ADSGoogle Scholar
  6. 6.
    Suh, K.-Y., Park, M.C., Kim, P.: Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv. Funct. Mater. 19(17), 2699–2712 (2009)Google Scholar
  7. 7.
    Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1), 1–8 (1997)Google Scholar
  8. 8.
    Patankar, N.A.: Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20(19), 8209–8213 (2004)Google Scholar
  9. 9.
    Gao, L.C., McCarthy, T.J.: The "lotus effect" explained: two reasons why two length scales of topography are important. Langmuir 22(7), 2966–2967 (2006)Google Scholar
  10. 10.
    Gao, X., Jiang, L.: Biophysics: water-repellent legs of water striders. Nature 432(7013), 36 (2004). 36ADSGoogle Scholar
  11. 11.
    Cong, Q., Chen, G.H., Fang, Y., Ren, L.Q.: Study on the super-hydrophobic characteristic of butterfly wing surface. J. Bionics Eng. 1, 249 (2004)Google Scholar
  12. 12.
    Shibuichi, S., Onda, T., Satoh, N., Tsujii, K.: Super water-repellent surfaces resulting from fractal structure. J. Phys. Chem. 100(50), 19512–19517 (1996)Google Scholar
  13. 13.
    Bravo, J., Zhai, L., Wu, Z., Cohen, R.E., Rubner, M.F.: Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23(13), 7293–7298 (2007)Google Scholar
  14. 14.
    Xu, Y., Fan, W.H., Li, Z.H., Wu, D., Sun, Y.H.: Antireflective silica thin films with super water repellence via a solgel process. Appl. Opt. 42(1), 108–112 (2003)ADSGoogle Scholar
  15. 15.
    Hong, J., Bae, W.K., Lee, H., Oh, S., Char, K., Caruso, F., Cho, J.: Tunable superhydrophobic and optical properties of colloidal films coated with block-copolymer-micelles/micelle-multilayers. Adv. Mater. 19(24), 4364–4369 (2007)Google Scholar
  16. 16.
    Wu, D., Chen, Q.-D., Xia, H., Jiao, J., Xu, B.-B., Lin, X.-F., Xu, Y., Sun, H.-B.: A facile approach for artificial biomimetic surfaces with both superhydrophobicity and iridescence. Soft Matter 6(2), 263–267 (2010)ADSGoogle Scholar
  17. 17.
    Wang, T., Hu, X., Dong, S.: A general route to transform normal hydrophilic cloths into superhydrophobic surfaces. Chem. Commun. 18, 1849–1851 (2007)Google Scholar
  18. 18.
    Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C.C., Pyatt, F.B.: Plastron properties of a superhydrophobic surface. Appl. Phys. Lett. 89(10), 104106 (2006). 2ADSGoogle Scholar
  19. 19.
    Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)Google Scholar
  20. 20.
    Cassie, A.B.D., Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 0546–0550 (1944)Google Scholar
  21. 21.
    Pease, D.C.: The significance of the contact angle in relation to the solid surface. J. Phys. Chem. 49(2), 107–110 (1945)Google Scholar
  22. 22.
    Gao, L., McCarthy, T.J.: How Wenzel and Cassie were wrong. Langmuir 23(7), 3762–3765 (2007)Google Scholar
  23. 23.
    Gao, L., McCarthy, T.J.: Wetting 101°†. Langmuir 25(24), 14105–14115 (2009)Google Scholar
  24. 24.
    Gao, L., McCarthy, T.J.: An attempt to correct the faulty intuition perpetuated by the Wenzel and Cassie “laws”. Langmuir 25(13), 7249–7255 (2009)Google Scholar
  25. 25.
    Young, T.: An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 23 (1805)Google Scholar
  26. 26.
    Quere, D.: Non-sticking drops. Rep. Prog. Phys. 68(11), 2495–2532 (2005)ADSGoogle Scholar
  27. 27.
    Herminghaus, S.: Roughness-induced non-wetting. Europhys. Lett. 52(2), 165 (2000)ADSGoogle Scholar
  28. 28.
    Marmur, A.: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19(20), 8343–8348 (2003)Google Scholar
  29. 29.
    Furmidge, C.G.L.: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17(4), 309–324 (1962)Google Scholar
  30. 30.
    Marmur, A.: Soft contact: measurement and interpretation of contact angles. Soft Matter 2(1), 12–17 (2006)ADSGoogle Scholar
  31. 31.
    Dorrer, C., Rühe, J.: Advancing and receding motion of droplets on ultrahydrophobic post surfaces. Langmuir 22(18), 7652–7657 (2006)Google Scholar
  32. 32.
    Chen, W., Fadeev, A.Y., Hsieh, M.C., Oner, D., Youngblood, J., McCarthy, T.J.: Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir 15(10), 3395–3399 (1999)Google Scholar
  33. 33.
    Öner, D., McCarthy, T.J.: Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16(20), 7777–7782 (2000)Google Scholar
  34. 34.
    Zhao, X.D., Fan, H.M., Liu, X.Y., Pan, H., Xu, H.Y.: Pattern-dependent tunable adhesion of superhydrophobic MnO2 nanostructured film. Langmuir 27(7), 3224–3228 (2011)Google Scholar
  35. 35.
    Bormashenko, E.: Why does the Cassie-Baxter equation apply? Colloids Surf. A 324(1–3), 47–50 (2008)Google Scholar
  36. 36.
    Chung, J.Y., Youngblood, J.P., Stafford, C.M.: Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 3(9), 1163–1169 (2007)ADSGoogle Scholar
  37. 37.
    Callies, M., Quere, D.: On water repellency. Soft Matter 1(1), 55–61 (2005)ADSGoogle Scholar
  38. 38.
    Bico, J., Marzolin, C., Quere, D.: Pearl drops (vol 47, pg 220, 1999). Europhys. Lett. 47(6), 743–744 (1999)ADSGoogle Scholar
  39. 39.
    He, B., Patankar, N.A., Lee, J.: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19(12), 4999–5003 (2003)Google Scholar
  40. 40.
    Lafuma, A., Quere, D.: Superhydrophobic states. Nat. Mater. 2(7), 457–460 (2003)ADSGoogle Scholar
  41. 41.
    Wier, K.A., McCarthy, T.J.: Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant. Langmuir 22(6), 2433–2436 (2006)Google Scholar
  42. 42.
    Dorrer, C., Rühe, J.: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23(7), 3820–3824 (2007)Google Scholar
  43. 43.
    Bico, J., Thiele, U., Quéré, D.: Wetting of textured surfaces. Colloids Surf. A Physicochem. Eng. Asp. 206(1–3), 41–46 (2002)Google Scholar
  44. 44.
    Quéré, D., et al.: Slippy and sticky microtextured solids. Nanotechnology 14(10), 1109 (2003)ADSGoogle Scholar
  45. 45.
    Patankar, N.A.: Transition between superhydrophobic states on rough surfaces. Langmuir 20(17), 7097–7102 (2004)Google Scholar
  46. 46.
    Ishino, C., Okumura, K., Quere, D.: Wetting transitions on rough surfaces. Europhys. Lett. 68(3), 419–425 (2004)ADSGoogle Scholar
  47. 47.
    Barbieri, L., Wagner, E., Hoffmann, P.: Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles. Langmuir 23(4), 1723–1734 (2007)Google Scholar
  48. 48.
    Nosonovsky, M., Bhushan, B.: Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7(9), 2633–2637 (2007)ADSGoogle Scholar
  49. 49.
    Bormashenko, E., Pogreb, R., Whyman, G., Erlich, M.: Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Langmuir 23(12), 6501–6503 (2007)Google Scholar
  50. 50.
    Zhao, X.-D., Fan, H.-M., Luo, J., Ding, J., Liu, X.-Y., Zou, B.-S., Feng, Y.-P.: Electrically adjustable, super adhesive force of a superhydrophobic aligned MnO2 nanotube membrane. Adv. Funct. Mater. 21(1), 184–190 (2011)Google Scholar
  51. 51.
    Krupenkin, T., Taylor, J.A., Kolodner, P., Hodes, M.: Electrically tunable superhydrophobic nanostructured surfaces. Bell Labs Tech. J. 10(3), 161–170 (2005)Google Scholar
  52. 52.
    Moulinet, S., Bartolo, D.: Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces. Eur. Phys. J. E Soft Matter 24(3), 251–260 (2007)Google Scholar
  53. 53.
    Reyssat, M., et al.: Impalement of fakir drops. Europhys. Lett. 81(2), 26006 (2008)ADSGoogle Scholar
  54. 54.
    Bartolo, D., Bouamrirene, F., Verneuil, E., Buguin, A., Silberzan, P., Moulinet, S.: Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74(2), 299–305 (2006)ADSGoogle Scholar
  55. 55.
    Zheng, Q.S., Yu, Y., Zhao, Z.H.: Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21(26), 12207–12212 (2005)Google Scholar
  56. 56.
    Extrand, C.W.: Designing for optimum liquid repellency. Langmuir 22(4), 1711–1714 (2006)Google Scholar
  57. 57.
    Liu, B., Lange, F.F.: Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size. J. Colloid Interf. Sci. 298(2), 899–909 (2006)Google Scholar
  58. 58.
    Schwartz, L.W., Garoff, S.: Contact angle hysteresis on heterogeneous surfaces. Langmuir 1(2), 219–230 (1985)Google Scholar
  59. 59.
    Chatain, D., Lewis, D., Baland, J.-P., Carter, W.C.: Numerical analysis of the shapes and energies of droplets on micropatterned substrates. Langmuir 22(9), 4237–4243 (2006)Google Scholar
  60. 60.
    Ishino, C., Okumura, K.: Nucleation scenarios for wetting transition on textured surfaces: the effect of contact angle hysteresis. Europhys. Lett. 76(3), 464 (2006)ADSGoogle Scholar
  61. 61.
    Sbragaglia, M., Peters, A.M., Pirat, C., Borkent, B.M., Lammertink, R.G.H., Wessling, M., Lohse, D.: Spontaneous breakdown of superhydrophobicity. Phys. Rev. Lett. 99(15), 156001 (2007)ADSGoogle Scholar
  62. 62.
    Zhang, J., Kwok, D.Y.: Contact line and contact angle dynamics in superhydrophobic channels. Langmuir 22(11), 4998–5004 (2006)Google Scholar
  63. 63.
    Xue, C.H., Jia, S.T., Zhang, J., Tian, L.Q.: Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films 517(16), 4593–4598 (2009)ADSGoogle Scholar
  64. 64.
    Li, J., Fu, J., Cong, Y., Wu, Y., Xue, L., Han, Y.: Macroporous fluoropolymeric films templated by silica colloidal assembly: a possible route to super-hydrophobic surfaces. Appl. Surf. Sci. 252(6), 2229–2234 (2006)ADSGoogle Scholar
  65. 65.
    Stelmashuk, V., Biederman, H., Slavínská, D., Zemek, J., Trchová, M.: Plasma polymer films rf sputtered from PTFE under various argon pressures. Vacuum 77(2), 131–137 (2005)Google Scholar
  66. 66.
    Kim, S.H., Kim, J.-H., Kang, B.-K., Uhm, H.S.: Superhydrophobic CFx coating via in-line atmospheric RF plasma of He−CF4−H2. Langmuir 21(26), 12213–12217 (2005)Google Scholar
  67. 67.
    Carpentier, J., Grundmeier, G.: Chemical structure and morphology of thin bilayer and composite organosilicon and fluorocarbon microwave plasma polymer films. Surf. Coat.Technol. 192(2–3), 189–198 (2005)Google Scholar
  68. 68.
    Fresnais, J., Benyahia, L., Poncin-Epaillard, F.: Dynamic (de)wetting properties of superhydrophobic plasma-treated polyethylene surfaces. Surf. Interface Anal. 38(3), 144–149 (2006)Google Scholar
  69. 69.
    Kiuru, M., Alakoski, E.: Low sliding angles in hydrophobic and oleophobic coatings prepared with plasma discharge method. Mater. Lett. 58(16), 2213–2216 (2004)Google Scholar
  70. 70.
    Teshima, K., Sugimura, H., Inoue, Y., Takai, O., Takano, A.: Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl. Surf. Sci. 244(1–4), 619–622 (2005)ADSGoogle Scholar
  71. 71.
    Teshima, K., Sugimura, H., Inoue, Y., Takai, O., Takano, A.: Wettablity of poly(ethylene terephthalate) substrates modified by a two-step plasma process: ultra water repellent surface fabrication. Chem. Vapor Depos. 10(6), 295–297 (2004)Google Scholar
  72. 72.
    Wu, Y., Bekke, M., Inoue, Y., Sugimura, H., Kitaguchi, H., Liu, C., Takai, O.: Mechanical durability of ultra-water-repellent thin film by microwave plasma-enhanced CVD. Thin Solid Films 457(1), 122–127 (2004)ADSGoogle Scholar
  73. 73.
    Han, J.T., Zheng, Y., Cho, J.H., Xu, X., Cho, K.: Stable superhydrophobic organic−inorganic hybrid films by electrostatic self-assembly. J. Phys. Chem. B 109(44), 20773–20778 (2005)Google Scholar
  74. 74.
    Schondelmaier, D., Cramm, S., Klingeler, R., Morenzin, J., Zilkens, C., Eberhardt,W.: Orientation and self-assembly of hydrophobic fluoroalkylsilanes. Langmuir 18(16), 6242–6245 (2002)Google Scholar
  75. 75.
    Song, X., Zhai, J., Wang, Y., Jiang, L.: Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties. J. Phys. Chem. B 109(9), 4048–4052 (2005)Google Scholar
  76. 76.
    Zhang, G., Wang, D., Gu, Z.-Z., Möhwald, H.: Fabrication of superhydrophobic surfaces from binary colloidal assembly. Langmuir 21(20), 9143–9148 (2005)Google Scholar
  77. 77.
    Zhao, N., Shi, F., Wang, Z., Zhang, X.: Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir 21(10), 4713–4716 (2005)Google Scholar
  78. 78.
    Shi, F., Wang, Z., Zhang, X.: Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders. Adv. Mater. 17(8), 1005–1009 (2005)Google Scholar
  79. 79.
    Ma, M., Mao, Y., Gupta, M., Gleason, K.K., Rutledge, G.C.: Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38(23), 9742–9748 (2005)ADSGoogle Scholar
  80. 80.
    Liu, H., Feng, L., Zhai, J., Jiang, L., Zhu, D.B.: Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir 20(14), 5659–5661 (2004)Google Scholar
  81. 81.
    Hosono, E., Fujihara, S., Honma, I., Zhou, H.S.: Superhydrophobic perpendicular nanopin film by the bottom-up process. J. Am. Chem. Soc. 127(39), 13458–13459 (2005)Google Scholar
  82. 82.
    Han, J.T., Lee, D.H., Ryu, C.Y., Cho, K.: Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding. J. Am. Chem. Soc. 126(15), 4796–4797 (2004)Google Scholar
  83. 83.
    Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T., Takahara, A.: Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir 21(16), 7299–7302 (2005)Google Scholar
  84. 84.
    Li, Y., Cai, W., Cao, B., Duan, G., Sun, F.: Fabrication of the periodic nanopillar arrays by heat-induced deformation of 2D polymer colloidal monolayer. Polymer 46(26), 12033–12036 (2005)Google Scholar
  85. 85.
    Nakajima, A., Saiki, C., Hashimoto, K., Watanabe, T.: Processing of roughened silica film by coagulated colloidal silica for super-hydrophobic coating. J. Mater. Sci. Lett. 20(21), 1975–1977 (2001)Google Scholar
  86. 86.
    Jiang, L., Zhao, Y., Zhai, J.: A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. Int. Ed. 43(33), 4338–4341 (2004)Google Scholar
  87. 87.
    Singh, A., Steely, L., Allcock, H.R.: Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers. Langmuir 21(25), 11604–11607 (2005)Google Scholar
  88. 88.
    Acatay, K., Simsek, E., Ow-Yang, C., Menceloglu, Y.Z.: Tunable, superhydrophobically stable polymeric surfaces by electrospinning. Angew. Chem. Int. Ed. 43(39), 5210–5213 (2004)Google Scholar
  89. 89.
    Suh, K.Y., Jon, S.: Control over wettability of polyethylene glycol surfaces using capillary lithography. Langmuir 21(15), 6836–6841 (2005)Google Scholar
  90. 90.
    Fürstner, R., Barthlott, W., Neinhuis, C., Walzel, P.: Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21(3), 956–961 (2005)Google Scholar
  91. 91.
    Patankar, N.A.: On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19(4), 1249–1253 (2003)Google Scholar
  92. 92.
    Martines, E., Seunarine, K., Morgan, H., Gadegaard, N., Wilkinson, C.D.W., Riehle, M.O.: Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 5(10), 2097–2103 (2005)ADSGoogle Scholar
  93. 93.
    Yoshimitsu, Z., Nakajima, A., Watanabe, T., Hashimoto, K.: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18(15), 5818–5822 (2002)Google Scholar
  94. 94.
    Please check the inserted page number for this reference. Jin, M.H., Feng, X.J., Feng, L., Sun, T.L., Zhai, J., Li, T.J., Jiang, L.: Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 17(16), 1977–1981 (2005)Google Scholar
  95. 95.
    Nakajima, A., Abe, K., Hashimoto, K., Watanabe, T.: Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films 376(1–2), 140–143 (2000)ADSGoogle Scholar
  96. 96.
    Nakajima, A., Fujishima, A., Hashimoto, K., Watanabe, T.: Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv. Mater. 11(16), 1365–1368 (1999)Google Scholar
  97. 97.
    Minko, S., Müller, M., Motornov, M., Nitschke, M., Grundke, K., Stamm, M.: Two-level structured self-adaptive surfaces with reversibly tunable properties. J. Am. Chem. Soc. 125(13), 3896–3900 (2003)Google Scholar
  98. 98.
    Khorasani, M.T., Mirzadeh, H.: In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. J. Appl. Polym. Sci. 91(3), 2042–2047 (2004)Google Scholar
  99. 99.
    Khorasani, M.T., Mirzadeh, H., Kermani, Z.: Wettability of porous polydimethylsiloxane surface: morphology study. Appl. Surf. Sci. 242(3–4), 339–345 (2005)ADSGoogle Scholar
  100. 100.
    Sun, M., Luo, C., Xu, L., Ji, H., Ouyang, Q., Yu, D., Chen, Y.: Artificial lotus leaf by nanocasting. Langmuir 21(19), 8978–8981 (2005)Google Scholar
  101. 101.
    Guo, L.J.: Recent progress in nanoimprint technology and its applications. J. Phys. D: Appl. Phys. 37(11), R123 (2004)ADSGoogle Scholar
  102. 102.
    Lee, W., Jin, M.-K., Yoo, W.-C., Lee, J.-K.: Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20(18), 7665–7669 (2004)Google Scholar
  103. 103.
    Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405(6787), 681–685 (2000)ADSGoogle Scholar
  104. 104.
    Feng, L., Song, Y., Zhai, J., Liu, B., Xu, J., Jiang, L., Zhu, D.: Creation of a superhydrophobic surface from an amphiphilic polymer. Angew. Chem. Int. Ed. 42(7), 800–802 (2003)Google Scholar
  105. 105.
    Please check the inserted year of publication for this reference. Cicala, G., Milella, A., Palumbo, F., Favia, P., D’Agostino, R.: Morphological and structural study of plasma deposited fluorocarbon films at different thicknesses. Diam. Relat. Mater. 12(10-11), 2020–2025 (2003)ADSGoogle Scholar
  106. 106.
    Wu, Y., Kuroda, M., Sugimura, H., Inoue, Y., Takai, O.: Nanotextures fabricated by microwave plasma CVD: application to ultra water-repellent surface. Surf. Coat.Technol. 174–175, 867–871 (2003)Google Scholar
  107. 107.
    Wu, Y., Sugimura, H., Inoue, Y., Takai, O.: Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma-enhanced CVD at low substrate temperatures. Thin Solid Films 435(1–2), 161–164 (2003)ADSGoogle Scholar
  108. 108.
    Li, M., Zhai, J., Liu, H., Song, Y., Jiang, L., Zhu, D.: Electrochemical deposition of conductive superhydrophobic zinc oxide thin films. J. Phys. Chem. B 107(37), 9954–9957 (2003)Google Scholar
  109. 109.
    Daoud, W.A., Xin, J.H., Tao, X.: Superhydrophobic silica nanocomposite coating by a low-temperature process. J. Am. Ceram. Soc. 87(9), 1782–1784 (2004)Google Scholar
  110. 110.
    Jung, D.-H., Park, I.J., Choi, Y.K., Lee, S.-B., Park, H.S., Rühe, J.: Perfluorinated polymer monolayers on porous silica for materials with super liquid repellent properties. Langmuir 18(16), 6133–6139 (2002)Google Scholar
  111. 111.
    Li, X.H., Cao, Z., Liu, F., Zhang, Z.J., Dang, H.X.: A novel method of preparation of superhydrophobic nanosilica in aqueous solution. Chem. Lett. 35(1), 94–95 (2006)Google Scholar
  112. 112.
    Mahltig, B., Böttcher, H.: Modified silica sol coatings for water-repellent textiles. J. Sol-gel Sci. Technol. 27(1), 43–52 (2003)Google Scholar
  113. 113.
    Nakagawa, T., Soga, M.: A new method for fabricating water repellent silica films having high heat-resistance using the sol-gel method. J. Non-Cryst. Solids 260(3), 167–174 (1999)ADSGoogle Scholar
  114. 114.
    Venkateswara Rao, A., Kulkarni, M.M., Amalnerkar, D.P., Seth, T.: Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J. Non-Cryst. Solids 330(1–3), 187–195 (2003)ADSGoogle Scholar
  115. 115.
    Rao, A.V., Pajonk, G.M., Bhagat, S.D., Barboux, P.: Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4-n. J. Non-Cryst. Solids 350, 216–223 (2004)ADSGoogle Scholar
  116. 116.
    Roig, A., Molins, E., Rodriguez, E., Martinez, S., Moreno-Manas, M., Vallribera, A.: Superhydrophobic silica aerogels by fluorination at the gel stage. Chem. Commun. 20, 2316–2317 (2004)Google Scholar
  117. 117.
    Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C.C.: Intrinsically superhydrophobic organosilica sol–gel foams. Langmuir 19(14), 5626–5631 (2003)Google Scholar
  118. 118.
    Ming, W., Wu, D., van Benthem, R., de With, G.: Superhydrophobic films from raspberry-like particles. Nano Lett. 5(11), 2298–2301 (2005)ADSGoogle Scholar
  119. 119.
    Wu, X., Zheng, L., Wu, D.: Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. Langmuir 21(7), 2665–2667 (2005)Google Scholar
  120. 120.
    Huang, L., Lau, S.P., Yang, H.Y., Leong, E.S.P., Yu, S.F., Prawer, S.: Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. B 109(16), 7746–7748 (2005)Google Scholar
  121. 121.
    Zhang, X., Shi, F., Yu, X., Liu, H., Fu, Y., Wang, Z., Jiang, L., Li, X.: Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J. Am. Chem. Soc. 126(10), 3064–3065 (2004)Google Scholar
  122. 122.
    Shiu, J.-Y., Kuo, C.-W., Chen, P., Mou, C.-Y.: Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem. Mater. 16(4), 561–564 (2004)Google Scholar
  123. 123.
    Zhai, L., Cebeci, F.Ç., Cohen, R.E., Rubner, M.F.: Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4(7), 1349–1353 (2004)ADSGoogle Scholar
  124. 124.
    Gu, G., Dang, H., Zhang, Z., Wu, Z.: Fabrication and characterization of transparent superhydrophobic thin films based on silica nanoparticles. Appl. Phys. Mater. Sci. Process. 83(1), 131–132 (2006)ADSGoogle Scholar
  125. 125.
    Shang, H.M., Wang, Y., Limmer, S.J., Chou, T.P., Takahashi, K., Cao, G.Z.: Optically transparent superhydrophobic silica-based films. Thin Solid Films 472(1–2), 37–43 (2005)ADSGoogle Scholar
  126. 126.
    Doshi, D.A., Shah, P.B., Singh, S., Branson, E.D., Malanoski, A.P., Watkins, E.B., Majewski, J., van Swol, F., Brinker, C.J.: Investigating the interface of superhydrophobic surfaces in contact with water. Langmuir 21(17), 7805–7811 (2005)Google Scholar
  127. 127.
    Sun, T., Wang, G., Liu, H., Feng, L., Jiang, L., Zhu, D.: Control over the wettability of an aligned carbon nanotube film. J. Am. Chem. Soc. 125(49), 14996–14997 (2003)Google Scholar
  128. 128.
    Zhu, L., Xiu, Y., Xu, J., Tamirisa, P.A., Hess, D.W., Wong, C.-P.: Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir 21(24), 11208–11212 (2005)Google Scholar
  129. 129.
    Mulder, M.: Basic Principles of Membrane Technology. Kluwer, Dordrecht (1991)Google Scholar
  130. 130.
    Erbil, H.Y., Demirel, A.L., Avcı, Y., Mert, O.: Transformation of a simple plastic into a superhydrophobic surface. Science 299(5611), 1377–1380 (2003)Google Scholar
  131. 131.
    Lu, X., Zhang, J., Zhang, C., Han, Y.: Low-density polyethylene (LDPE) surface with a wettability gradient by tuning its microstructures. Macromol. Rapid Commun. 26(8), 637–642 (2005)Google Scholar
  132. 132.
    Xie, Q., Xu, J., Feng, L., Jiang, L., Tang, W., Luo, X., Han, C.C.: Facile creation of a super-amphiphobic coating surface with bionic microstructure. Adv. Mater. 16(4), 302–305 (2004)Google Scholar
  133. 133.
    Yabu, H., Shimomura, M.: Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 17(21), 5231–5234 (2005)Google Scholar
  134. 134.
    Vogelaar, L., Lammertink, R.G.H., Wessling, M.: Superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step. Langmuir 22(7), 3125–3130 (2006)Google Scholar
  135. 135.
    Zhao, N., Xie, Q., Weng, L., Wang, S., Zhang, X., Xu, J.: Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution. Macromolecules 38(22), 8996–8999 (2005)ADSGoogle Scholar
  136. 136.
    Xie, Q., Fan, G., Zhao, N., Guo, X., Xu, J., Dong, J., Zhang, L., Zhang, Y.: Facile creation of a bionic super-hydrophobic block copolymer surface. Adv. Mater. 16(20), 1830–1833 (2004)Google Scholar
  137. 137.
    Han, J.T., Xu, X., Cho, K.: Diverse access to artificial superhydrophobic surfaces using block copolymers. Langmuir 21(15), 6662–6665 (2005)Google Scholar
  138. 138.
    Huang, Z.-M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)Google Scholar
  139. 139.
    Ma, M., Hill, R.M., Lowery, J.L., Fridrikh, S.V., Rutledge, G.C.: Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21(12), 5549–5554 (2005)Google Scholar
  140. 140.
    Wang, S., Song, Y., Jiang, L.: Photoresponsive surfaces with controllable wettability. J. Photochem. and Photobio. C: Photochem. Rev. 8(1), 18–29 (2007)Google Scholar
  141. 141.
    Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T.: Light-induced amphiphilic surfaces. Nature 388(6641), 431–432 (1997)ADSGoogle Scholar
  142. 142.
    Tadanaga, K., Morinaga, J., Matsuda, A., Minami, T.: Superhydrophobic–superhydrophilic micropatterning on flowerlike alumina coating film by the sol–gel method. Chem. Mater. 12(3), 590–592 (2000)Google Scholar
  143. 143.
    Feng, X., Zhai, J., Jiang, L.: The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew. Chem. Int. Ed. 44(32), 5115–5118 (2005)Google Scholar
  144. 144.
    Zhang, X., Jin, M., Liu, Z., Nishimoto, S., Saito, H., Murakami, T., Fujishima, A.: Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces. Langmuir 22(23), 9477–9479 (2006)Google Scholar
  145. 145.
    Zhang, X., Jin, M., Liu, Z., Tryk, D.A., Nishimoto, S., Murakami, T., Fujishima, A.: Superhydrophobic TiO2 surfaces: preparation, photocatalytic wettability conversion, and superhydrophobic–superhydrophilic patterning. J. Phys. Chem. C 111(39), 14521–14529 (2007)Google Scholar
  146. 146.
    Sun, R.-D., Nakajima, A., Fujishima, A., Watanabe, T., Hashimoto, K.: Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105(10), 1984–1990 (2001)Google Scholar
  147. 147.
    Miyauchi, M., Shimai, A., Tsuru, Y.: Photoinduced hydrophilicity of heteroepitaxially grown ZnO thin films. J. Phys. Chem. B 109(27), 13307–13311 (2005)Google Scholar
  148. 148.
    Feng, X., Feng, L., Jin, M., Zhai, J., Jiang, L., Zhu, D.: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126(1), 62–63 (2003)Google Scholar
  149. 149.
    Zhang, X.-T., Sato, O., Fujishima, A.: Water ultrarepellency induced by nanocolumnar ZnO surface. Langmuir 20(14), 6065–6067 (2004)Google Scholar
  150. 150.
    Papadopoulou, E.L., Barberoglou, M., Zorba, V., Manousaki, A., Pagkozidis, A., Stratakis, E., Fotakis, C.: Reversible photoinduced wettability transition of hierarchical ZnO structures. J. Phys. Chem. C 113(7), 2891–2895 (2009)Google Scholar
  151. 151.
    Wang, S., Feng, X., Yao, J., Jiang, L.: Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew. Chem. Int. Ed. 45(8), 1264–1267 (2006)Google Scholar
  152. 152.
    Lim, H.S., Kwak, D., Lee, D.Y., Lee, S.G., Cho, K.: UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. J. Am. Chem. Soc. 129(14), 4128–4129 (2007)Google Scholar
  153. 153.
    Zhu, W., Feng, X., Feng, L., Jiang, L.: UV-Manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film. Chem. Commun. 26, 2753–2755 (2006)Google Scholar
  154. 154.
    Kietzig, A.-M., Hatzikiriakos, S.G., Englezos, P.: Patterned superhydrophobic metallic surfaces. Langmuir 25(8), 4821–4827 (2009)Google Scholar
  155. 155.
    Delorme, N., Bardeau, J.F., Bulou, A., Poncin-Epaillard, F.: Azobenzene-containing monolayer with photoswitchable wettability. Langmuir 21(26), 12278–12282 (2005)Google Scholar
  156. 156.
    Rosario, R., Gust, D., Hayes, M., Jahnke, F., Springer, J., Garcia, A.A.: Photon-modulated wettability changes on spiropyran-coated surfaces. Langmuir 18(21), 8062–8069 (2002)Google Scholar
  157. 157.
    Cooper, C.G.F., MacDonald, J.C., Soto, E., McGimpsey, W.G.: Non-covalent assembly of a photoswitchable surface. J. Am. Chem. Soc. 126(4), 1032–1033 (2004)Google Scholar
  158. 158.
    Driscoll, P.F., Purohit, N., Wanichacheva, N., Lambert, C.R., McGimpsey, W.G.: Reversible photoswitchable wettability in noncovalently assembled multilayered films. Langmuir 23(26), 13181–13187 (2007)Google Scholar
  159. 159.
    Abbott, S., Ralston, J., Reynolds, G., Hayes, R.: Reversible wettability of photoresponsive pyrimidine-coated surfaces. Langmuir 15(26), 8923–8928 (1999)Google Scholar
  160. 160.
    Ichimura, K., Oh, S.-K., Nakagawa, M.: Light-driven motion of liquids on a photoresponsive surface. Science 288(5471), 1624–1626 (2000)ADSGoogle Scholar
  161. 161.
    Siewierski, L.M., Brittain, W.J., Petrash, S., Foster, M.D.: Photoresponsive monolayers containing in-chain azobenzene. Langmuir 12(24), 5838–5844 (1996)Google Scholar
  162. 162.
    Jiang, W., Wang, G., He, Y., Wang, X., An, Y., Song, Y., Jiang, L.: Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer. Chem. Commun. 28, 3550–3552 (2005)Google Scholar
  163. 163.
    Rosario, R., Gust, D., Garcia, A.A., Hayes, M., Taraci, J.L., Clement, T., Dailey, J.W., Picraux, S.T.: Lotus effect amplifies light-induced contact angle switching. J. Phys. Chem. B 108(34), 12640–12642 (2004)Google Scholar
  164. 164.
    Athanassiou, A., Lygeraki, M.I., Pisignano, D., Lakiotaki, K., Varda, M., Mele, E., Fotakis, C., Cingolani, R., Anastasiadis, S.H.: Photocontrolled variations in the wetting capability of photochromic polymers enhanced by surface nanostructuring. Langmuir 22(5), 2329–2333 (2006)Google Scholar
  165. 165.
    Liang, L., Feng, X., Liu, J., Rieke, P.C., Fryxell, G.E.: Reversible surface properties of glass plate and capillary tube grafted by photopolymerization of N-isopropylacrylamide. Macromolecules 31(22), 7845–7850 (1998)ADSGoogle Scholar
  166. 166.
    Yim, H., Kent, M.S., Mendez, S., Balamurugan, S.S., Balamurugan, S., Lopez, G.P., Satija, S.: Temperature-dependent conformational change of PNIPAM grafted chains at high surface density in water. Macromolecules 37(5), 1994–1997 (2004)ADSGoogle Scholar
  167. 167.
    Yim, H., Kent, M.S., Huber, D.L., Satija, S., Majewski, J., Smith, G.S.: Conformation of end-tethered PNIPAM chains in water and in acetone by neutron reflectivity. Macromolecules 36(14), 5244–5251 (2003)ADSGoogle Scholar
  168. 168.
    Kidoaki, S., Ohya, S., Nakayama, Y., Matsuda, T.: Thermoresponsive structural change of a poly(N-isopropylacrylamide) graft layer measured with an atomic force microscope. Langmuir 17(8), 2402–2407 (2001)Google Scholar
  169. 169.
    Sun, T., Wang, G., Feng, L., Liu, B., Ma, Y., Jiang, L., Zhu, D.: Reversible Switching between Superhydrophilicity and Superhydrophobicity. Angew. Chem. Int. Ed. 43(3), 357–360 (2004)Google Scholar
  170. 170.
    Xia, F., Feng, L., Wang, S., Sun, T., Song, W., Jiang, W., Jiang, L.: Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv. Mater. 18(4), 432–436 (2006)Google Scholar
  171. 171.
    Isaksson, J., Tengstedt, C., Fahlman, M., Robinson, N., Berggren, M.: A solid-state organic electronic wettability switch. Adv. Mater. 16(4), 316–320 (2004)Google Scholar
  172. 172.
    Hayes, R.A., Feenstra, B.J.: Video-speed electronic paper based on electrowetting. Nature 425(6956), 383–385 (2003)ADSGoogle Scholar
  173. 173.
    Jones, T.B.: On the relationship of dielectrophoresis and electrowetting. Langmuir 18(11), 4437–4443 (2002)Google Scholar
  174. 174.
    Lippmann, G.: Relations entre les ph´enom`enes ´electriques et capillaires. Ann. Chim. Phys. 5, 494 (1875)Google Scholar
  175. 175.
    Berge, B.: Electrocapillarite et mouillage de films isolants par l’eau. C. R. Acad. Sci. II 317, 157 (1993)Google Scholar
  176. 176.
    Krupenkin, T.N., Taylor, J.A., Schneider, T.M., Yang, S.: From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20(10), 3824–3827 (2004)Google Scholar
  177. 177.
    Han, Z.J., Tay, B., Tan, C.M., Shakerzadeh, M., Ostrikov, K.: Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites. ACS Nano 3(10), 3031–3036 (2009)Google Scholar
  178. 178.
    Kakade, B., Mehta, R., Durge, A., Kulkarni, S., Pillai, V.: Electric field induced, superhydrophobic to superhydrophilic switching in multiwalled carbon nanotube papers. Nano Lett. 8(9), 2693–2696 (2008)ADSGoogle Scholar
  179. 179.
    Chen, J.Y., Kutana, A., Collier, C.P., Giapis, K.P.: Electrowetting in carbon nanotubes. Science 310(5753), 1480–1483 (2005)ADSGoogle Scholar
  180. 180.
    Zhu, L.B., Xu, J.W., Xiu, Y.H., Sun, Y.Y., Hess, D.W., Wong, C.P.: Electrowetting of aligned carbon nanotube films. J. Phys. Chem. B 110(32), 15945–15950 (2006)Google Scholar
  181. 181.
    Wang, Z.K., Ci, L.J., Chen, L., Nayak, S., Ajayan, P.M., Koratkar, N.: Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett. 7(3), 697–702 (2007)ADSGoogle Scholar
  182. 182.
    Bodre, C., Pauporte, T.: Nanostructured ZnO-Based Surface with Reversible Electrochemically Adjustable Wettability. Adv. Mater. 21(6), 697 (2009)Google Scholar
  183. 183.
    Lahann, J., Mitragotri, S., Tran, T.N., Kaido, H., Sundaram, J., Choi, I.S., Hoffer, S., Somorjai, G.A., Langer, R.: A reversibly switching surface. Science 299(5605), 371–374 (2003)ADSGoogle Scholar
  184. 184.
    Xu, L.B., Chen, W., Mulchandani, A., Yan, Y.S.: Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew. Chem. Int. Ed. 44(37), 6009–6012 (2005)Google Scholar
  185. 185.
    Mie, G.: Ultra Water-Repellent Surface Resulting from Complicated Microstructure of SiO2 nano particles Ann. Phys. 25, 377 (1908) Google Scholar
  186. 186.
    Please check the inserted author names and provide article title and volume for this reference. Soeno, T., Inokuchi, K., Shiratori, S.: Trans. Mater. Res. Soc. Jpn 28 (2003)Google Scholar
  187. 187.
    Nakajima, A., Hashimoto, K., Watanabe, T., Takai, K., Yamauchi, G., Fujishima, A.: Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 16(17), 7044–7047 (2000)Google Scholar
  188. 188.
    Fresnais, J., Chapel, J.P., Poncin-Epaillard, F.: Synthesis of transparent superhydrophobic polyethylene surfaces. Surf. Coat.Technol. 200(18–19), 5296–5305 (2006)Google Scholar
  189. 189.
    Prevo, B.G., Hon, E.W., Velev, O.D.: Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells. J. Mater. Chem. 17(8), 791–799 (2007)Google Scholar
  190. 190.
    Gu, Z.-Z., Uetsuka, H., Takahashi, K., Nakajima, R., Onishi, H., Fujishima, A., Sato, O.: Structural color and the lotus effect. Angew. Chem. Int. Ed. 42(8), 894–897 (2003)Google Scholar
  191. 191.
    Barthlott, W., Schimmel, T., Wiersch, S., Koch, K., Brede, M., Barczewski, M., Walheim, S., Weis, A., Kaltenmaier, A., Leder, A., Bohn, H.F.: The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv. Mater. 22(21), 2325–2328 (2010)Google Scholar
  192. 192.
    Poetes, R., Holtzmann, K., Franze, K., Steiner, U.: Metastable underwater superhydrophobicity. Phys. Rev. Lett. 105(16), 166104 (2010)ADSGoogle Scholar
  193. 193.
    Truesdell, R., Mammoli, A., Vorobieff, P., van Swol, F., Brinker, C.J.: Drag reduction on a patterned superhydrophobic surface. Phys. Rev. Lett. 97(4), 044504 (2006)ADSGoogle Scholar
  194. 194.
    Watanabe, K., Udagawa, Y., Udagawa, H.: Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381, 225–238 (1999)ADSMATHGoogle Scholar
  195. 195.
    Ou, J., Perot, B., Rothstein, J.P.: Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16(12), 4635–4643 (2004)ADSGoogle Scholar
  196. 196.
    Ou, J., Rothstein, J.P.: Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids 17(10), 103606–103610 (2005)ADSGoogle Scholar
  197. 197.
    Shi, F., Niu, J., Liu, J., Liu, F., Wang, Z., Feng, X.Q., Zhang, X.: Towards understanding why a superhydrophobic coating is needed by water striders. Adv. Mater. 19(17), 2257–2261 (2007)Google Scholar
  198. 198.
    Washizu, M.: Electrostatic actuation of liquid droplets for micro-reactor applications. IEEE Trans. Ind. Appl. 34(4), 732–737 (1998)Google Scholar
  199. 199.
    Pollack, M.G., Fair, R.B., Shenderov, A.D.: Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77(11), 1725–1726 (2000)ADSGoogle Scholar
  200. 200.
    Takeda, K., Nakajima, A., Hashimoto, K., Watanabe, T.: Jump of water droplet from a super-hydrophobic film by vertical electric field. Surf. Sci. 519(1–2), L589–L592 (2002)ADSGoogle Scholar
  201. 201.
    García, A.A., Egatz-Gómez, A., Lindsay, S.A., Domínguez-García, P., Melle, S., Marquez, M., Rubio, M.A., Picraux, S.T., Yang, D., Aella, P., Hayes, M.A., Gust, D., Loyprasert, S., Vazquez-Alvarez, T., Wang, J.: Magnetic movement of biological fluid droplets. J. Magn. Magn. Mater. 311(1), 238–243 (2007)ADSGoogle Scholar
  202. 202.
    Lindsay, S., Vazquez, T., Egatz-Gomez, A., Loyprasert, S., Garcia, A.A., Wang, J.: Discrete microfluidics with electrochemical detection. Analyst 132(5), 412–416 (2007)ADSGoogle Scholar
  203. 203.
    Lifton, V.A., Simon, S., Frahm, R.E.: Reserve battery architecture based on superhydrophobic nanostructured surfaces. Bell Labs Tech. J. 10(3), 81–85 (2005)Google Scholar
  204. 204.
    Li, W., Wang, X., Chen, Z., Waje, M., Yan, Y.: Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell. Langmuir 21(21), 9386–9389 (2005)Google Scholar
  205. 205.
    Feng, L., Zhang, Z., Mai, Z., Ma, Y., Liu, B., Jiang, L., Zhu, D.: A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed. 43(15), 2012–2014 (2004)Google Scholar
  206. 206.
    Zhai, L., Berg, M.C., Cebeci, F.Ç., Kim, Y., Milwid, J.M., Rubner, M.F., Cohen, R.E.: Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Lett. 6(6), 1213–1217 (2006)ADSGoogle Scholar
  207. 207.
    Garrod, R.P., Harris, L.G., Schofield, W.C.E., McGettrick, J., Ward, L.J., Teare, D.O.H., Badyal, J.P.S.: Mimicking a Stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic–superhydrophilic surfaces. Langmuir 23(2), 689–693 (2006)Google Scholar
  208. 208.
    Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.-Q., Zhao, Y., Zhai, J., Jiang, L.: Directional water collection on wetted spider silk. Nature 463(7281), 640–643 (2010)ADSGoogle Scholar
  209. 209.
    Wang, Y., Sims, C.E., Marc, P., Bachman, M., Li, G.P., Allbritton, N.L.: Micropatterning of living cells on a heterogeneously wetted surface. Langmuir 22(19), 8257–8262 (2006)Google Scholar
  210. 210.
    Shiu, J.Y., Chen, P.L.: Addressable protein patterning via switchable superhydrophobic microarrays. Adv. Funct. Mater. 17(15), 2680–2686 (2007)Google Scholar
  211. 211.
    Shiu, J.-Y., Kuo, C.-W., Whang, W.-T., Chen, P.: Observation of enhanced cell adhesion and transfection efficiency on superhydrophobic surfaces. Lab Chip 10(5), 556–558 (2010)Google Scholar
  212. 212.
    Sun, T., Tan, H., Han, D., Fu, Q., Jiang, L.: No platelet can adhere—largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small 1(10), 959–963 (2005)Google Scholar
  213. 213.
    Samuel, J.D.J.S., Ruther, P., Frerichs, H.P., Lehmann, M., Paul, O., Rühe, J.: A simple route towards the reduction of surface conductivity in gas sensor devices. Sens. Actuators B Chem 110(2), 218–224 (2005)Google Scholar
  214. 214.
    Yamauchi, G., Takai, K., Saito, H.: PTEE based water repellent coating for telecommunication antennas. IEICE T. Electron. E83C(7), 1139–1141 (2000)Google Scholar
  215. 215.
    Zhang, H., et al.: Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour. Sci. Technol. Adv. Mater. 6(3–4), 236 (2005)Google Scholar
  216. 216.
    Liu, T., Yin, Y., Chen, S., Chang, X., Cheng, S.: Super-hydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochim. Acta 52(11), 3709–3713 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.College of MaterialsXiamen UniversityXiamenP.R. China
  2. 2.Department of Physics and Department of Chemistry, Faculty of ScienceNational University of SingaporeSingaporeSingapore

Personalised recommendations