Skip to main content

Biomineralization: Tooth Enamel Formation

  • Chapter
  • First Online:
Bioinspiration

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1832 Accesses

Abstract

Tooth enamel is composed of well-crystallized apatite that elongates in the c-axis direction with a highly organized orientation. How do these crystals form? It is still an unanswered question, despite enormous efforts made on answering it.

Chapter 5 briefly reviews the physicochemical studies on clarifying the mechanism of enamel apatite formation. These studies revealed that enamel apatite crystals are formed in a fluid with discrete inorganic and organic compositions. The activity of inorganic ions changes dynamically during the formation process under strict cellular control, and it provides an adequate driving force for nucleation and successive growth. These processes include a dynamic equilibrium of inorganic ions and a transition of unstable intermediates to more stable phases. The composition and solubility of the forming enamel crystals also change dynamically. Because of this complex situation, several formation mechanisms of enamel apatite crystals have been proposed, and researchers have yet to reach a consensus on the subject. Crystal formation takes place in a gel-like enamel matrix, composed of spherical aggregates of amelogenin molecules. Amelogenin is a major component of the enamel matrix and regulates crystal formation by cooperating with enameline (minor matrix protein) and inorganic fluid components. Once enamel formation is initiated, these proteins are degraded into smaller fractions, change the interaction with forming crystals and inorganic ions, and are gradually removed from the matrix, providing space for enamel crystals to grow. The chapter ends with a discussion of unique hard tissues with unusual mineral phases in vertebrate and invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nanci, A.: TenCate’s oral histology: histology development, & function. Chapter 7, pp.~138–179. Mosby Inc., (2003)

    Google Scholar 

  2. Watson, M.L.: The extracellular nature of enamel in the rat. J Biophys Biochem Cytol 23, 447–497 (1960)

    Google Scholar 

  3. Fukae, M., Shimizu, M.: Studies on the proteins of developing bovine enamel. Arch Oral Biol 19, 381–386 (1974)

    Google Scholar 

  4. Glimcher, M.J., Mechanis, G.L., Friberg, U.A.: The amino acid composition of the organic matrix and the neutral soluble and acid soluble components of embrionic bovine enamel. Biochem J 93, 198–202 (1964)

    Google Scholar 

  5. Robinson, C., Hiller, C.R., Weatherell, J.A.: Uptake of 32P-labelled phosphate into developing rat incisor enamel. Calcf. Tissue. Res. 15, 143–152 (1974)

    Google Scholar 

  6. Bawden, J.W., Merritt, D.H., Deaton, T.G.: In vitro study of calcium-45 and phosphorus-32 uptake in developing rat molar enamel using quantitative methods. Arch Oral Biol 26, 477–482 (1981)

    Google Scholar 

  7. Takano, Y., Crenshaw, M.A., Bawden, J.W., Hammarstrom, L., Lindskog, S.: The Visualization of the patterns of ameloblast modulation by the glyoxal bis(2-hydroxyanil) staining method. J Dent Res 61, 1580–1586 (1982)

    Google Scholar 

  8. Takano, Y., Crenshaw, M.A., Reith, E.J.: Correlarion of 45Ca incorporation with maturation ameloblast morphology in the rat incisor. Calcif Tissue Int 34, 211–213 (1982)

    Google Scholar 

  9. Kawamoto, T., Shimidzu, M.: Changes in the mode of calcium and phosphate transport during rat incisal enamel formation. Calcif Tissue Int 46, 406–414 (1990)

    Google Scholar 

  10. Kawamoto, T., Shimidzu, M.: Changes of the ratio of calcium to phosphate transported into the mineralizing enamel, dentin, and bone. Jpn J Oral Biol 36, 365–382 (1994)

    Google Scholar 

  11. Deakins, M.: Changes in the ash, water, and organic content of pig enamel during calcification. J Dent Res 21, 429–435 (1942)

    Google Scholar 

  12. Robinson, C., Briggs, H.D., Atkinson, P.J., Weatherell, J.A.: Matrix and mineral changes in developing enamel. J Dent Res 58, 871–880 (1984)

    Google Scholar 

  13. Weidmann, S.M., Weatherell, J.A., Hamm, S.: Variations of enamel density in sections of human teeth. Arch Oral Biol 12, 85–97 (1967)

    Google Scholar 

  14. Eastoe, J.E.: The amino acid composition of proteins from the oral tissue-II. The matrix proteins in dentine and enamel from developing human deciduous teeth. Arch Oral Biol 8, 633–652 (1963)

    Google Scholar 

  15. Fincham, A.G.: The amelogenin problem; A comparison of purified enamel matrix proteins. Calcif Tissue Int 26, 65–73 (1979)

    Google Scholar 

  16. Takagi, T., Sasaki, S., Baba, T.: Complete amino acid sequence of amelogenin in developing bovine enamel. Biochem Biophys Res Commun 121, 592–597 (1984)

    Google Scholar 

  17. Snead, M.L., Lau, E.C., Zeichner-David, M., Fincham, A.G., Woo, S.L.C., Slavkin, H.C.: DNA sequence for cloned cDNA for murine amelogenin reveal the amino acid sequence for enamel-specific protein. Biochem Biophys Res Commun 129, 812–818 (1985)

    Google Scholar 

  18. Simmer, J.P., Lau, E.C., Hu, C.C., Aoba, T., Lacey, M., Nelson, D., Zeichner-David, M., Snead, M.L., Slavkin, H.C., Fincham, A.G.: Isolation and characterization of a mouse amelogenin expressed in Escherichia coli. Calcif Tissue Int 54, 312–319 (1994)

    Google Scholar 

  19. Tan, J., Leung, W., Moradian-Oldak, J., Zeichner-David, M., Fincham, A.G.: Quantitative analysis of amelogenin solubility. J Dent Res 77, 1388–1396 (1998)

    Google Scholar 

  20. Fincham, A.G., Moradian-Oldak, J., Simmer, J.P., Sarte, P.E., Lau, E.C., Diekwisch, T.G.H., Slavkin, H.C.: Self-assembly of a recombinant amelogenin protein generates supra-molecule structures. J Struct Biol 112, 103–109 (1994)

    Google Scholar 

  21. Moradian-Oldak, J., Simmer, J.P., Lau, E.C., Sarte, P.E., Slavkin, H.C., Fincham, A.G.: Detection of monodisperse aggregates of a recombinant amelogenin by dynamic light scattering. Biopolymers 34, 1339–1347 (1994)

    Google Scholar 

  22. Moradian-Oldak, J., Leung, W., Fincham, A.G.: Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: A dynamic light-scattering analysis. J Struct Biol 122, 320–327 (1998)

    Google Scholar 

  23. Aoba, T., Fukae, M., Tanabe, T., Shimizu, M., Moreno, E.C.: Selective adsorption of porcine amelogenins onto hydroxyapatite and their Inhibitory activity on hydroxyapatite growth in supersaturated solutions. Calcif Tissue Int 41, 281–289 (1987)

    Google Scholar 

  24. Moradian-Oldak, J., Leung, W., Tan, J., Fincham, A.G.: Interaction of amelogenin with hydroxyapatite crystals: An adherence effect through amelogenin molecular self-association. Bioploymers 46, 225–238 (1998)

    Google Scholar 

  25. Ryu, O.H., Hu, C.C., Simmer, J.P.: Biochemical characterization of recombinant mouse amelogenin: protein quantitation, proton absorption, and relative affinity for enamel crystals. Connect Tissue Res 38, 207–214 (1998)

    Google Scholar 

  26. Gibson, C.W., Golub, E., Abrams, W.R., Shen, G., Ding, W., Rosenbloom, J.: Bovine amelogenin message heterogeneity: alternative splicing and Y-chromosomal gene transcription. Biochemistry 31, 8384–8388 (1992)

    Google Scholar 

  27. Simmer, J.P., Hu, C.C., Lau, E.C., Sarte, P.E., Moradian-Oldak, J., Slavkin, H.C., Fincham, A.G.: Alternative splicing of the mouse amelogenin primary RNA transcript. Calcif Tissue Int 55, 302–310 (1994)

    Google Scholar 

  28. Hu, C.C., Yamakoshi, Y., Yamakoshi, F., Krebsbach, P.H., Simmer, J.P.: Proteomic and genetic of dental enamel. Cells Tissue Organ 181, 219–231 (2005)

    Google Scholar 

  29. Brookers, S.J., Robinson, C., Kirkham, J., Bonass, W.A.: Biochemistry and molecular biology of amelogenin proteins of developing dental enamel. Arch Oral Biol 40, 1–14 (1995)

    Google Scholar 

  30. Fincham, A.G., Moradian-Oldak, J., Simmer, J.P.: The structural biology of the developing dental enamel matrix. J Struct Biol 126, 270–299 (1999)

    Google Scholar 

  31. Yanagisawa, T., Nylen, M.U., Termine, J.D.: Distribution of matrix components in hamster enamel. Electron microscopic study. J Dent Res 60(A), 558 (1981)

    Google Scholar 

  32. Yamakoshi, Y.: Carbohydrate moieties of porcine 32 kDa enamelin. Calcif Tissue Int 56, 323–330 (1995)

    Google Scholar 

  33. Termine, J.D., Belcourt, A.B., Christner, P.J., Conn, K.M., Nylen, M.U.: Properties of dissociatively extracted fetal tooth matrix proteins. 1. Principle molecular species in developing bovine enamel. J Biol Chem 255, 9760–9768 (1980)

    Google Scholar 

  34. Tanabe, T., Aoba, T., Moreno, E.C., Fukae, M., Shimizu, M.: Properties of phosphrylated 32 kDa nonamelogenin proteins isolated from porcine secretory enamel. Calcif Tissue Int 46, 205–215 (1990)

    Google Scholar 

  35. Deutsch, D., Palmon, A., Fisher, L., Termine, J.D., Young, M.: Sequencing of bovine enamelin (‘Tuftelin’), A novel acidic enamel protein. J Biol Chem 266, 16021–16028 (1991)

    Google Scholar 

  36. Fukae, M., Tanabe, T., Uchida, T., Yamakoshi, Y., Shimizu, M.: Enamelins in the newly formed bovine enamel. Calcif Tissue Int 53, 257–261 (1993)

    Google Scholar 

  37. Hu, C.C., Fukae, M., Uchida, T., Qian, Q., Zhang, C.H., Ryu, O.H., Tanabe, T., Yamakoshi, Y., Murakami, C., Dohi, N., Shimizu, M., Simmer, J.P.: Cloning, and characterization of porcine enamelin mRNAs. J Dent Res 76, 1720–1729 (1997)

    Google Scholar 

  38. Yamakoshi, Y., Pinheiro, F.H., Tanabe, T., Fukae, M., Shimizu, M.: Sites of asparagine-linked oligosaccharides in porcine 32 kDa enamelin. Connect Tissue Res 39, 39–46 (1998)

    Google Scholar 

  39. Fukae, M., Tanabe, T.: Non-amelogenin components of porcine enamel in the protein fraction from enamel crystals. Calcif Tissue Int 40, 286–293 (1987)

    Google Scholar 

  40. Uchida, T., Fukae, M., Tanabe, T., Yamakoshi, Y., Satoda, T., Murakami, C., Takahashi, O., Shimizu, M.: Immnolchemical and immnocytochemical study of a 15 kDa non-amelogenin and related proteins in the porcine immature enamel: Proposal of a new group of enamel proteins sheath proteins. Biomed Res 16, 131–140 (1995)

    Google Scholar 

  41. Hu, C.C., Fukae, M., Uchida, T., Qian, Q., Zhang, C.H., Ryu, O.H., Tanabe, T., Yamakoshi, Y., Murakami, C., Dohi, N., Shimizu, M., Simmer, J.P. : Sheathlin cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins. J Dent Res 76, 648–657 (1997)

    Google Scholar 

  42. Fearnhead, R.W.: Mineralization of rat enamel. Nature 188, 509–600 (1960)

    ADS  Google Scholar 

  43. Reith, E.J.: The early stage of amelogenesis as observed in molar teeth of young rats. J Ultrastruct Res 17, 503–526 (1967)

    ADS  Google Scholar 

  44. Beniash, E., Metzler, R.A., Lam, R.S.K., Gilbert, P.U.P.A.: Transient amorphous calcium phosphate in forming enamel. J Struct Biol 166, 133–143 (2009)

    Google Scholar 

  45. Brown, W.E., Lehr, J.R., Smith, J.P., Frazier, A.W.: Octacalcium phosphate and hydroxyapatite. Nature 196, 1048–1055 (1962)

    ADS  Google Scholar 

  46. Brown, W.E.: Crystal Growth of bone mineral. Clin. Orthop. 44, 205–220 (1966)

    Google Scholar 

  47. Cuisinier, F.J.G., Steuer, P., Senger, B., Vogel, J.C., Frank, R.M.: Human amelogenesis—high resolution electron microscopy of nanometer sized particles. Cell Tissue Res 273, 175–182 (1993)

    Google Scholar 

  48. Bodier-Houlle, P., Steuer, P., Meyer, J.M., Bigeard, L., Cuisinier, F.J.G.: High resolution electron microscopic study of the relationship between human enamel and dentin crystals at the dentimo-enamel junction. Cell Tissue Res 301, 389–395 (2000)

    Google Scholar 

  49. Rönnholm, E.: The amelogenesis of human teeth as revealed by electron microscopy. (II) The development of the enamel crystallites. J Ultrastruct Res 6, 249–303 (1962)

    Google Scholar 

  50. Nylen, M.U., Eanes, E.D., Omnell, K.A.: Crystal growth in rat enamel. J Cell Biol 18, 109–123 (1963)

    Google Scholar 

  51. Travis, D.F., Glimcher, M.J.: The structure and organization of, and the relationship between the organic matrix and the inorganic crystals of embryonic bovine enamel. J Cell Biol 23, 447–497 (1964)

    Google Scholar 

  52. Weiss, M.P., Vogel, J.C., Frank, R.M.: Enamel crystallite growth: width and thickness study related to the possible presence of octacalcium phosphate during amelogenesis. J Ultrastruct Res 76, 286–292 (1981)

    Google Scholar 

  53. Daculci, G., Menanteau, J., Kerevel, L.M., Mitre, D.: Enamel crystals: size Shape, length and growing process; High resolution TEM and biochemical study. In: Fearnhead, R.W., Suga, S. (eds.) Tooth Enamel IV, pp. 14–23. Elsevier Sci. Pub, Amsterdam (1984)

    Google Scholar 

  54. Kerebel, B., Daculsi, G., Kerebel, L.M.: Ultrastructural studies of enamel crystallites. J Dent Res 58, 844–850 (1979)

    Google Scholar 

  55. Nylen, M.U.: Matrix-mineral relationships—a morphologist’s viewpoint. J Dent Res 58(B), 922–926 (1979)

    Google Scholar 

  56. Pain, M.L., Snead, M.L.: Protein interactions during assembly of the enamel organic extracellular matrix. J Bone Miner Res 12, 221–227 (1997)

    Google Scholar 

  57. Lakshminarayanan, R., Fan, D., Du, C., Moradian-Oldak, J.: The role of secondary structre in the entropically driven amelogenin self-assembly. Biophys J 93, 3664–3674 (2007)

    Google Scholar 

  58. Wen, H.B., Moradian-Oldak, J., Leung, W., Bringas Jr., P., Fincham, A.G.: Microstructures of an amelogenin gel matrix. J Struct Biol 126, 42–51 (1999)

    Google Scholar 

  59. Wiedemann-Bidlack, F.B., Beniash, E., Yamakoshi, Y., Simmer, J.P., Margolis, H.C.: PH triggered self-assembly of native and recombinant amelogenins under physiological pH and temperature. J Struct Biol 160, 57–69 (2007)

    Google Scholar 

  60. Moradian-Oldak, J., Du, C., Falini, G.: On the formation of amelogenin Microribbons. Eur J Oral Sci 114, 289–296 (2006)

    Google Scholar 

  61. Fincham, A.G., Moradian-Oldak, J., Diekwisch, T.G.H., Lyaruu, D.M., Wright, J.T., Bringas Jr., P., Slavkin, H.C.: Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol 115, 50–59 (1995)

    Google Scholar 

  62. Moradian-Oldak, J., Lau, E.C., Diekwisch, T.G.H., Slavkin, H.C., Fincham, A.G.: A review of the aggregation properties of a recombinant amelogenin. Connect Tissue Res 32, 125–130 (1995)

    Google Scholar 

  63. Margoris, H.C., Beniash, E., Fowler, E.C.: Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 85, 775–793 (2006)

    Google Scholar 

  64. Fukae, M., Yamamoto, R., Karakido, T., Shimoda, S., Tanabe, T.: Micelle structure of amelogenin in porcine secretory enamel. J Dent Res 86(8), 758–763 (2007)

    Google Scholar 

  65. Bartlett, J.D., Simmer, J.P.: Proteinases in developing dental enamel. Crit Rev Oral Biol Med 10, 425–441 (1999)

    Google Scholar 

  66. Simmer, J.P., Fukae, M., Tanabe, T., Ymakoshi, Y., Uchida, T., Xue, J.: Purification, characterization, and cloning of enamel matrix serine protease 1. J Dent Res 77, 377–386 (1998)

    Google Scholar 

  67. Goto, Y., Kogure, E., Takagi, T., Aimoto, S., Aoba, T.: Molecular conformation of porcine amelogenin in solution: three folding units at the N-terminal, central, and C-terminal regions. J Biochem 113, 55–60 (1993)

    Google Scholar 

  68. Matsushima, N., Izumi, Y., Aoba, T.: Small-angle X-Ray scattering and computer-Aided molecular modeling studies of 20 kDa fragment of porcine amelogenin: Does amelogenin adopt an elongated bundle structure? J Biochem 123, 150–156 (1998)

    Google Scholar 

  69. Aoba, T., Moreno, E.C.: The enamel fluid in the early secretory stage of porcine amelogenesis: chemical composition and saturation with respect to enamel mineral. Calcif Tissue Int 41, 86–94 (1987)

    Google Scholar 

  70. Amano, T., Sato, K., Aoba, T.: Soluble constituents in the fluid environment of pig and rat developing enamel and their relevance to the regulation of mineralization. Jpn J Oral Biol 43, 257–267 (2001)

    Google Scholar 

  71. Sasaki, S., Takagi, T., Suzuki, M.: Cyclic changes in pH in bovine developing enamel as sequential bands. Arch Oral Biol 36, 227–231 (1991)

    Google Scholar 

  72. Moreno, E.C., Aoba, T.: Comparative solubility study of human dental enamel, dentin, and hydroxyapatite. Calcif Tissue Int 49, 6–13 (1991)

    Google Scholar 

  73. McConnel, D.: Recent advance in the investigation of the crystal chemistry of dental enamel. Arch Oral Biol 3, 28–34 (1960)

    Google Scholar 

  74. Aoba, T., Moreno, E.C.: Changes in the nature and composition of enamel mineral during porcine amelogenesis. Calcif Tissue Int 47, 356–364 (1990)

    Google Scholar 

  75. Aoba, T., Moreno, E.C.: Changes in the solubility of enamel mineral at various stages of porcine amelogenesis. Calcif Tissue Int 50, 266–272 (1992)

    Google Scholar 

  76. Shimoda, S., Aoba, T., Moreno, E.C.: Acid-phosphate contents in porcine enamel mineral at various stages of amelogenesis. J Dent Res 70, 1516–1523 (1991)

    Google Scholar 

  77. Aoba, T., Sato, K.: Mechanism of developmental enamel mineralization: enamel fluid, crystals, and organic matrix. In Tooth Ename, (Association for Comparative Biology of Tooth Enamel), pp.67–81. Wakaba Pub. Inc., Japan (2009)

    Google Scholar 

  78. Moreno, E.C., Kresak, M., Zahradnik, R.T.: Fluoridated hydroxyapatite solubility and caries formation. Nature 247, 64–65 (1974)

    ADS  Google Scholar 

  79. Brown, W.E., Mathew, M., Tung, M.S.: Crystal chemistry of octacalcium phosphate. In: Pamplin, B.R. (ed.) Progress in crystal growth and characterization, vol. 4, pp. 59–87. Pergamon Press Ltd., Great Britain (1981)

    Google Scholar 

  80. LeGeroe, R.Z.: Calcium phosphate in oral biology and medicine. Karger, Baskel (1991)

    Google Scholar 

  81. Elliott, J.C.: Structure and chemistry of the apatites and other calcium orthophosphates, vol. 18. Studies in inorganic chemistry, Elsevier, London (1994)

    Google Scholar 

  82. Chickerur, N.S., Tung, M.S., Brown, W.E.: A mechanism for incorporation of carbonate into apatite. Calcif Tissue Int 32, 55–62 (1980)

    Google Scholar 

  83. LeGeroe, R.Z.: Apatites in biological systems. In: Pamplin, B.R. (ed.) Progress in crystal growth and characterization, vol. 4, pp. 1–45. Pergamon Press Ltd., Great Britain (1981)

    Google Scholar 

  84. Shimoda, S., Aoba, T., Moreno, E.C., Miake, Y.: Effect of solution composition on morphological and structural feature of carbonated calcium apatites. J Dent Res 69, 1731–1740 (1990)

    Google Scholar 

  85. Posner, A.S., Perloff, A., Diorio, A.F.: Refinement of the hydroxyapatite structure. Acta Cryst 11, 308–309 (1958)

    Google Scholar 

  86. Kay, M.I., Young, R.A., Posner, A.S.: Crystal structure of hydroxyapatite. Nature 204, 1050–1052 (1964)

    ADS  Google Scholar 

  87. Young, R.A., Elliott, J.C.: Atomic-scale bases for several properties of apatites. Arch Oral Biol 11, 699–707 (1966)

    Google Scholar 

  88. Young, R.A., Mackie, P.E.: Crystallography of human tooth enamel: initial structure refinement. Mater Res Bull 15, 17–29 (1980)

    Google Scholar 

  89. Young, R.A.: Implication of atomic substitutions and other structural details in apatites. J Dent Res 53, 193–203 (1974)

    Google Scholar 

  90. Hagen, A.R.: Structural features of biologicaly involved phosphates. Acta Odontol Scand 31, 149–173 (1973)

    Google Scholar 

  91. Arsenault, A.L., Robinson, B.W.: The Dentino-enamel junction: a structural and microanalytical study of early mineralization. Calcif Tissue Int 45, 111–121 (1989)

    Google Scholar 

  92. Diekwisch, T.G.H., Berman, B.J., Gentner, S., Slavkin, H.C.: Initial enamel crystals are not spatially associated with mineralized dentin. Cell Tissue Res 279, 149–167 (1995)

    Google Scholar 

  93. Beniash, E., Simmer, J.P., Margoris, H.C.: The Effect of recombinant mouse amelogeneses nn the formation and organization of hydroxyapatite crystals in vitro. J Struct Biol 149, 182–190 (2005)

    Google Scholar 

  94. Tao, J., Pan, H., Zeng, Y., Xu, X., Tang, R.: Roles of Amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J Phys Chem 111, 13410–13418 (2007)

    Google Scholar 

  95. Wang, L., Guan, X., Chang, D., Moradian-Oldak, J., Nancollas, G.H.: Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. J Phys Chem 111, 6398–6404 (2007)

    Google Scholar 

  96. Yang, X., Wang, L., Qin, Y., Sun, Z., Henneman, Z.J., Moradian-Oldak, J., Nancollas, G.H.: How amelogenin orchestrates the organization of hierarchical elongated microstructures of apatite. J Phys Chem 114(6), 22293–22300 (2010)

    Google Scholar 

  97. Shaw, W.J., Campbell, A.A., Pain, M., Snead, M.L.: The COOH terminus of the amelogenin, LRAP, is oriented next to hydroxyapatite surface. J Biol Chem 279, 40263–40266 (2004)

    Google Scholar 

  98. Tarasevich, B.J., Howard, C.J., Larson, J.L., Snead, M.L., Simmer, J.P., Pain, M., Shaw, W.J.: The nucleation and growth of calcium phosphate by amelogenin. J Cryst Growth 304, 407–415 (2007)

    ADS  Google Scholar 

  99. Kirkham, J., Zhang, J., Brookes, S.J., Shore, R.C., Ryu, O.H., Wood, S.R., Smith, D.A., Wallwork, M.L., Robinson, C.: Evidence for charge domains on developing enamel crystal surfaces. J Dent Res 79, 1943–1947 (2000)

    Google Scholar 

  100. Bouropoulos, N., Moradian-Oldak, J.: Induction of apatite by the cooperative effect of amelogenin and 32 kDa enamelin. J Dent Res 83, 278–282 (2004)

    Google Scholar 

  101. Fan, D., Lakshminarayanan, R., Moradian-Oldak, J.: The 32 kDa enamelin undergoes conformational transitions upon calcium binding. J Struct Biol 163, 109–115 (2008)

    Google Scholar 

  102. Fan, D., Chan, D., Sun, Z., Lakshminarayanan, R., Moradian-Oldak, J.: In vitro study on the interaction between the 32 kDa enamelin and amelogenin. J Struct Biol 166, 88–94 (2009)

    Google Scholar 

  103. Iijima, M., Fan, D., Bromly, K. M., Sun, Z., Moradian-Oldak, J.: The 32 kDa enamelin undergoes conformational transitions upon calcium binding. Crystal Growth. Design, (under review). (2010)

    Google Scholar 

  104. Combes, C., Rey, C.: Amorphous calcium phosphates synthesis, properties and uses in biomaterials. Acta Biomaterialia. 6(9), 3362–3378 (2010)

    Google Scholar 

  105. Eanes, D.E.: Amorphous calcium phosphate. In: Chow, L.C., Eanes, E.D. (eds.) Octacalcium phosphate, vol. 18, pp. 130–147. Monograp. Oral Sci, Basel, Karger (2001)

    Google Scholar 

  106. Eanes, E.D., Posner, A.S.: Intermediate phases in the basic solution preparation of alkaline earth phosphates. Calcif Tissue Res 2, 38–48 (1968)

    Google Scholar 

  107. Termin, J.D., Peckauskas, R.A., Ponser, A.S.: Calcium phosphate formation in vitro. II. Effects of environment on amorphous-crystalline transition. Arch. Biochem. Biophys. 140, 318–325 (1970)

    Google Scholar 

  108. Kwack, S.Y., Wiedemann-Bidlack, F.B., Beniash, E., Yamakoshi, Y., Simmer, J.P., Litman, A., Margolis, H.C.: Role of 20 kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro. J Biol Chem 284(28), 18972–18979 (2009)

    Google Scholar 

  109. Robinson, C., Shore, R.C., Wood, S.R., Brookes, S.J., Smith, D.A.M., Wright, J.T., Connell, S., Kirlkham, J.: Subunit structures in hydroxyapatite crystal development in enamel: implication for amelogenesis imperfecta. Connect Tissue Res 44, 65–71 (2003)

    Google Scholar 

  110. Tomson, M.B., Nancollas, G.H.: Mineralization kinetics: a constant composition approach. Science 200, 1059–1060 (1978)

    ADS  Google Scholar 

  111. Onuma, K., Ito, A.: Cluster growth model for hydroxyapatite. Chem Mat 10, 3346–3351 (1998)

    Google Scholar 

  112. Oyane, A., Onuma, K., Kokubo, T., Ito, A.: Clustering of calcium phosphate in the system CaCl2-H3PO4-KCl-H2O. J Phys Chem B 103, 8230–8235 (1999)

    Google Scholar 

  113. Eanes, E.D., Gillssen, I.H., Posner, A.S.: Intermediate states in the precipitation of hydroxyapatite. Nature 208, 365 (1965)

    ADS  Google Scholar 

  114. Termine, J.D., Eanes, E.D.: Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif Tissue Res 10, 171–197 (1972)

    Google Scholar 

  115. Eanes, E.D., Meyer, J.L.: The Maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Res 23, 259–269 (1977)

    Google Scholar 

  116. Eanes, E.D.: Crystal growth of mineral phases in skeletal tissues. In: Pamplin, B.R. (ed.) Progress in crystal growth and characterization, vol. 3, pp. 3–15. Pergamon Press Ltd, Great Britain (1981)

    Google Scholar 

  117. Eanes, E.D., Termine, J.D., Nylen, M.U.: An electron microscopic study of the formation of amorphous calcium phosphate and its transition to crystalline apatite. Calcif Tissue Res 12, 143–158 (1973)

    Google Scholar 

  118. Meyer, J.L.: Phase transformation in the spontaneous precipitation of calcium phosphate. Croat Chem Acta 56, 753–767 (1983)

    Google Scholar 

  119. Brown, W.E., Schroeder, L.W., Ferris, J.S.: Interlayering of crystalline octacalcium phosphate and hydroxyapatite. J Phys Chem 83, 1385–1388 (1979)

    Google Scholar 

  120. Miake, Y., Shimoda, S., Fukae, M., Aoba, T.: Epitaxial overgrowth of apatite crystals on the thin-ribbon precursor at early stages of porcine enamel mineralization. Calcif Tissue Int 53, 249–256 (1993)

    Google Scholar 

  121. Tohda, H., Yamada, M., Yamaguchi, Y., Yanagisawa, T.: High-resolution electron microscopical observations of initial enamel crystals. J Electron Microsc 1, 97–101 (1997)

    Google Scholar 

  122. Arnord, S., Plate, U., Wiesmann, H.P., Stratmann, U., Kohl, H., Holing, H.J.: Quantitative analyses of the biomineralization of different hard tissue. J Microsc 202, 488–494 (2001)

    MathSciNet  Google Scholar 

  123. Arends, J., Davidson, C.L.: HPO4 contents in enamel and artificial carious lesions. Calcif Tissue Res 18, 65–79 (1975)

    Google Scholar 

  124. Crane, N.J., Popescu, V., Morris, M.D., Steenhuis, P., Ignelzi Jr., M.A.: Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39, 434–442 (2006)

    Google Scholar 

  125. Nelson, D.G.A., Wood, G.J., Barry, J.C., Featherstone, J.D.B.: The structure of (100) defects in carbonated apatite crystallites: A high resolution electron microscopy study. Ultramicroscopy 19, 253–266 (1986)

    Google Scholar 

  126. Nakahara, H., Kakei, M.: Central dark line and carbonic anhydrase: Problems relating to crystal nucleation in enamel. In: Fearnhead, R. W., Suga, S. (eds.) Tooth Enamel IV. pp. 42–46, 82. Elsevier Sci. Pub., Amsterdam (1984)

    Google Scholar 

  127. Cuisinier, F.J.G., Steuer, P., Senger, B., Vogel, J.C., Frank, R.M.: Human amelogenesis I: High resolution electron microscopy study of ribbon-like crystals. Calcif Tissue Int 51, 259–268 (1992)

    Google Scholar 

  128. Nelson, D.G.A., Barry, J.C.: High resolution electron microscopy of nonstichometric apatite crystals. Anat Rec 224, 265–276 (1989)

    Google Scholar 

  129. Iijima, M., Tohda, H., Moriwaki, Y.: Growth and structure of lamellar mixed crystals of octacalcium phosphate and apatite in a model system of enamel formation. J Cryst Growth 116, 319–326 (1992)

    ADS  Google Scholar 

  130. Iijima, M., Tohda, H., Suzuki H., Yanagisawa T., Moriwaki, Y.: Effect of F on apatite octacalcium phosphate intergrowth and morphology in a model system of tooth enamel formation. Calcif. Tiss. Int. 50, 357–361 (1992)

    Google Scholar 

  131. Aoba, T., Miake, Y., Shimoda, S., Prostak, K., Moreno, E.C., Suga, S.: Dental apatites in vertebrates species: morphology and chemical properties. In: Nakahara, H., Suga, S. (eds.) Mechanisms and phylogeny of mineralization in biological systems, pp. 459–463. Springer-Verlag, Tokyo (1991)

    Google Scholar 

  132. Miake, Y., Aoba, T., Moreno, E.C., Shimoda, S., Prostak, K., Suga, S.: Ultrastructural studies on crystal growth of enameloid minerals in elasmobranch and teleost fish. Calcif Tissue Int 48, 204–217 (1991)

    Google Scholar 

  133. Kakei, M., Sakae, T., Yoshikawa, M.: Electron microscopy of octacalcium phosphate in the dental calculus. J Electron Microsc 58(6), 393–398 (2010)

    Google Scholar 

  134. Osborn, J.W.: The mechanism of prism formation in teeth: a hypothesis. Calcif Tissue Int 5, 115–132 (1970)

    Google Scholar 

  135. Moriwaki, Y., Doi, Y., Kani, T., Aoba, T., Takahashi, J., Okazaki, M.: Synthesis of enamel-like apatite at physiological temperature and pH using ion-selective membranes. In: Suga, S. (ed.) Mechanism of tooth enamel formation, pp. 239–256. Quintessence, Tokyo (1983)

    Google Scholar 

  136. Iijima, M.: Formation of octacalcium phosphate in vitro. In: Chow, L.C., Eanes, E.D. (eds.) Octacalcium phosphate, vol. 18, pp. 17–49. Karger, Monograp. Oral Sci. (2001)

    Google Scholar 

  137. Hata, M., Moriwaki, Y., Doi, Y., Goto, T., Wakamatu, N., Kamemizu, H.: Oriented growth of octacalcium phosphate on cation selective membrane (in Japanese). Jpn J Crystal Growth 12, 91–99 (1985)

    Google Scholar 

  138. Aoba, T., Fejerskov, O.: Dental fluorosis: chemistry and biology. Crit Rev Oral Biol Med 13(2), 155–170 (2002)

    Google Scholar 

  139. Iijima, M., Moriwaki, Y., Takgi, T., Moradian-Oldak, J.: Effects of bovine amelogenins on the crystal morphology of octacalcium phosphae in a model system of tooth enamel formation. J Cryst Growths 222, 615–626 (2001)

    ADS  Google Scholar 

  140. Iijima, M., Moradian-Oldak, J.: Control of octacalcium phosphae and apatite growth by amelogenin matrices. J Mater Chem 14, 2189–2199 (2004)

    Google Scholar 

  141. Iijima, M., Moradian-Oldak, J.: Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials 26, 1595–1603 (2005)

    Google Scholar 

  142. Chapman, F.: Notes on shell-structure in the genus Lingula, Recent and Fossil. J R Micro Soc 5, 28–31 (1914)

    Google Scholar 

  143. Klement, R.: Die anorganshe skeletsubstantz. Ihre zusammensetzung, naturlichs unt kunstliche bildung. Naturewissenshaften 26, 145–152 (1938)

    ADS  Google Scholar 

  144. Kelly, P. G., Oliver, P. T. P., Pautard, F. G. E.: The shell of Lingula unguis. Proc. 2nd. Eur. Symp. Calcif. Tissue. 337-345. (1965)

    Google Scholar 

  145. Iijima, M., Moriwaki, Y.: Orientation of apatite and organic matrix in Lingula unguis shell. Calcif Tissue Int 47, 237–242 (1990)

    Google Scholar 

  146. Iijima, M., Kamemizu, H., Wakamatu, N., Goto, T., Moriwaki, Y.: Thermal decomposition of Lingula shell apatite. Calcif Tissue Int 49, 128–133 (1991)

    Google Scholar 

  147. Iwata, K.: Ultrastructure and calcification of the shells in inarticulate Brachiopods. I. Ultrastructure of Lingula unguis (LINNAEUS). J Geol Soc Jpn 87, 405–415 (1981)

    Google Scholar 

  148. Iijima, M., Moriwaki, Y., Gyotoku, T., Hayashi, K., Imura, S.: Small angle X-ray scattering study of Lingula unguis shell. Jpn J Oral Biolt 31, 308–316 (1989)

    Google Scholar 

  149. Eanes, E.D.: Thermodynamical studies on amorphous calcium phosphate. Calcif Tissue Res 5, 133–145 (1970)

    Google Scholar 

  150. Ishiyama, M., Sasagawa, I., Akai, J.: The inorganic content of pleromin in tooth plates of the living Holocephalan consists of a crystalline calcium phosphate known as ß-Ca3(PO4)2 (whitlockite). Arch Histol Jpn 47, 89–94 (1984)

    Google Scholar 

  151. Ishiyama, M., Teraki, Y.: The fine structure and formation of hypermineralized petrodentine in tooth plate of extant Lungfish. Arch Histol Cytol 53, 307–321 (1990)

    Google Scholar 

  152. Bentov, S., Zaslansky, P., Sawalmih, A.A., Masic, A., Fratzl, P., Sagi, A., Berman, A., Aichmayer, B.: Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat Commun 3, 839 (2012). doi:10.1038/ncomms1839

    Google Scholar 

  153. Bonass, W.A., Robinson, P.A., Kirkham, J., Shore, R.C., Robinson, C.: Molecular cloning and DNA sequence of Rat amelogenin and a comparative analysis of mammalian amelogenin protein sequence divergence. Biochem Biophys Res Commun 198, 755–763 (1994)

    Google Scholar 

  154. Toyosawa, S., O’hUign, C., Figueroa, F., Tichy, H., Klein, J.: Identification and characterization of amelogenin genes in monotremes, reptiles and amphibians. Proc Natl Acad Sci U S A 95, 13056–13061 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayumi Iijima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iijima, M., Onuma, K., Tsuji, T. (2012). Biomineralization: Tooth Enamel Formation. In: Liu, X. (eds) Bioinspiration. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5372-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5372-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5303-1

  • Online ISBN: 978-1-4614-5372-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics