Skip to main content

Biomineralization: Mechanisms of Hydroxyapatite Crystal Growth

  • Chapter
  • First Online:
Bioinspiration

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1881 Accesses

Abstract

Progress in the investigation of the growth mechanism of hydroxyapatite, the most important biomineral, is described in relation to observation and measurement techniques of crystals growing in aqueous solutions. Optical interferometry, especially phase-shift interferometry, can measure the apatite growth rate precisely and facilitates estimates of several growth parameters necessary to analyze the growth mechanism of apatite. The data strongly suggest that the growth unit of apatite takes the form of energetically stable clusters. Apatite growth proceeds via accumulation of clusters, resembling the growth of macromolecular protein crystals, although conventional spiral or two-dimensional nucleation growth occurs on the surface, as in the case of protein crystals. Phase transformation of amorphous calcium phosphate into apatite proceeds via direct structure reconstruction of aggregates with clusters as the minimum unit. These cluster-based transformation and growth phenomena are not specific to apatite: they also occur in other biominerals, such as calcium carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Newman, W.F., Newman, M.W.: The chemical dynamics of bone mineral. University Chicago Press, Chicago (1958)

    Google Scholar 

  2. Aoki, H.: Kyoi no Seitai Busshitsu Apatite (in Japanese). Ishiyaku Publishers Inc., Tokyo (1999)

    Google Scholar 

  3. Elliot, J.C.: Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam (1994)

    Google Scholar 

  4. Wang, L., Nancollas, G.H.: Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 108, 4628–4669 (2008)

    Article  Google Scholar 

  5. Combes, C., Rey, C.: Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomaterialia 6(9), 3362–3378 (2010)

    Article  Google Scholar 

  6. Elliot, J.C.: Monoclinic space group of hydroxyapatite. Nature 230, 72 (1971)

    Article  ADS  Google Scholar 

  7. Posner, A.S., Perloff, A., Diorio, A.F.: Refinement of the hydroxyapatite structure. Acta. Cryst. 11, 308–309 (1958)

    Article  Google Scholar 

  8. Elliot, J.C., Mackie, P.E., Young, R.A.: Monoclinic hydroxyapatite. Science 180, 1055–1057 (1973)

    Article  ADS  Google Scholar 

  9. Bauer, M.: Röntgenographische und Dielektrische Untersuchungen an Apatiten. Dissertation, Fakultät für Physik, Universität Karlsruhe (1991)

    Google Scholar 

  10. Dallemagne, M.J., Richelle, L.J.: Inorganic chemistry of bone. Biological mineralization, pp.23–42. Wiley, New York (1973)

    Google Scholar 

  11. Weatherell, J.A., Robinson, C.: The inorganic composition of teeth. Biological mineralization, pp.43–74. Wiley, New York (1973)

    Google Scholar 

  12. Bienenstock, A., Posner, A.S.: Calculations of the X-ray intensities from arrays of small crystallites of hydroxyapatite. Arch. Biochem. Biophys. 124, 604–607 (1968)

    Article  Google Scholar 

  13. Eanes, E.D., Gillessen, I.H., Posner, A.S.: Intermediate states in the precipitation of hydroxyapatite. Nature 208, 365–367 (1965)

    Article  ADS  Google Scholar 

  14. Termine, J.D., Posner, A.S.: Calcium phosphate formation in vitro. I. Factors affecting initial phase separation. Arch. Biochem. Biophys. 140, 307–317 (1970)

    Article  Google Scholar 

  15. Termine, J.D., Eanes, E.D.: Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif. Tissue. Res. 10, 171–197 (1972)

    Article  Google Scholar 

  16. Dorozhkin, S.V., Epple, M.: Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41, 3130–3146 (2002)

    Article  Google Scholar 

  17. Christofferesen, J., Christofferesen, M.R., Kibalczyc, W., Andersen, A.: A contribution of understanding of the formation of calcium phosphates. J. Cryst. Growth 94, 767–777 (1989)

    Article  ADS  Google Scholar 

  18. Christofferesen, J., Christofferesen, M.R., Kibalczyc, W.: Apparent solubilities of two amorphous calcium phosphates and of octacalcium phosphate in the temperature range 30-42°C. J.Cryst. Growth 106, 349–354 (1990)

    Article  ADS  Google Scholar 

  19. Posner, A.S., Betts, F.: Synthetic amorphous calcium phosphate and its relation to bone mineral. Accounts Chem. Res. 8, 273–281 (1975)

    Article  Google Scholar 

  20. Tropp, J., Blumenthal, N.C., Waugh, J.S.: Phosphorous NMR study of solid amorphous calcium phosphate. J. Am. Chem. Soc. 105, 22–26 (1983)

    Article  Google Scholar 

  21. Harries, J.E., Hukins, D.W.L., Hasnain, S.S.: Analysis of the EXAFS spectrum of hydroxyapatite. Mater. Res. Bull. 9, 353–360 (1986)

    Google Scholar 

  22. Harries, J.E., Hukins, D.W.L., Holt, C., Hasnain, S.S.: Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J. Cryst. Growth 84, 563–570 (1987)

    Article  ADS  Google Scholar 

  23. Peters, F., Schwarz, K., Epple, M.: The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim. Acta. 361, 131–138 (2000)

    Article  Google Scholar 

  24. Onuma, K., Oyane, A., Tsutsui, K., Tanaka, K., Treboux, G., Kanzaki, N., Ito, A.: Precipitation kinetics of hydroxyapatite revealed by the continuous-angle laser light-scattering technique. J.Phys. Chem. B 104, 10563–10568 (2000)

    Article  ADS  Google Scholar 

  25. Pan, H.-B., Darvell, B.W.: Calcium phosphate solubility: the need for re-evaluation. Cryst. Growth & Des. 9, 639–645 (2009)

    Article  Google Scholar 

  26. Burton, W.K., Cabrera, N., Frank, F.C.: The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. Roy. Soc. London A234, 299–358 (1951)

    MathSciNet  ADS  Google Scholar 

  27. Bennema, P.: Crystal growth measurements on potassium aluminium alum and sodium chlorate from slightly supersaturated solutions. Phy. Stat. Solidi. 17, 563–570 (1966)

    Article  ADS  Google Scholar 

  28. Denk Jr., E.G., Botsaris, G.D.: Mechanisms of potassium alum crystal growth from solution. J.Cryst. Growth 6, 241–244 (1970)

    Article  ADS  Google Scholar 

  29. Gilmer, G.H., Ghez, R., Cabrera, N.: An analysis of combined surface and volume diffusion processes in crystal growth. J. Cryst. Growth 8, 79–93 (1971)

    Article  ADS  Google Scholar 

  30. Chernov, A.A.: The spiral growth of crystals. Sov. Phys. Usp. 4, 116–148 (1961)

    Article  ADS  Google Scholar 

  31. Sunagawa, I., Tsukamoto, K.: Growth spirals on NaCl and KCl crystals growth from solution phase. J. Cryst. Growth 15, 73–78 (1972)

    Article  ADS  Google Scholar 

  32. Van Enckevort, W.J.P., Bennema, P., van der Linden, W.H.: On the observation of growth spirals with very low step heights on potassium alum single crystals. Z. Phys. Chem. 124, 171–191 (1981)

    Article  Google Scholar 

  33. Jetten, L.A.M.J., van der Hoek, B., van Enckevort, W.J.P.: In situ observations of the growth behavior of the {010} face of potassium hydrogen phthalate. J. Cryst. Growth 62, 593–611 (1983)

    Article  Google Scholar 

  34. Van Enckevort, W.J.P., Klapper, H.: Observation of growth steps with full and half unit cell heights on the {011} faces of NiSO4·6H2O in relation to the defect structure. J. Cryst. Growth 80, 91–103 (1987)

    Article  ADS  Google Scholar 

  35. Van Erk, W., van Hoek-Martens, H.J.G.J., Bartels, G.: The effect of substrate orientation on the growth kinetics of garnet liquid phase epitaxy. J. Cryst. Growth 48, 621–634 (1980)

    Article  Google Scholar 

  36. Chernov, A.A., Rashkovich, L.N., Mkrtchan, A.A.: Solution growth kinetics and mechanism: prismatic face of ADP. J. Cryst. Growth 74, 101–112 (1986)

    Article  ADS  Google Scholar 

  37. Chernov, A.A., Rashkovich, L.N.: Spiral crystal growth with nonlinear dependence of step growth rate on supersaturation; the {110} faces of KH2PO4 crystals in aqueous solution. J.Cryst. Growth 84, 389–393 (1987)

    Article  ADS  Google Scholar 

  38. Maiwa, K., Tsukamoto, K., Sunagawa, I.: Activities of spiral growth hillocks on the (111) faces of barium nitrate crystals growing in an aqueous solution. J. Cryst. Growth 102, 43–53 (1990)

    Article  ADS  Google Scholar 

  39. Onuma, K., Tsukamoto, K., Sunagawa, I.: Growth kinetics of K-Alum crystal in relation to the surface supersaturations. J. Cryst. Growth 100, 125–132 (1990)

    Article  ADS  Google Scholar 

  40. Vekilov, P.G., Kuznetsov, Y.G., Chernov, A.A.: Interstep interaction in solution growth; (101) ADP face. J. Cryst. Growth 121, 643–655 (1992)

    Article  ADS  Google Scholar 

  41. Malkin, A.I., Chernov, A.A., Alexeev, I.V.: Growth of dipyramidal face of dislocation-free ADP crystals; free energy of steps. J. Cryst. Growth 97, 765–769 (1989)

    Article  ADS  Google Scholar 

  42. Mullin, J.W.: Crystallization, 4th edn, p. 130. Butterworth-Heinemann, Oxford (2001)

    Google Scholar 

  43. Robinson, R.: The significance of phosphate esters in metabolism. New York University Press, New York (1932)

    Google Scholar 

  44. Brighton, C.T., Hunt, R.M.: Mitchodrial calcium and its role in calcification. Histochemical localization of calcium in electron micrographs of the epiphyseal growth plate with K-pyroantimonate. Clin. Orthop. 100, 406–416 (1974)

    Article  Google Scholar 

  45. Farley, J.R., Baylink, D.J.: Purification of skeletal growth factor from human bone. Biochemistry 21, 3205–3207 (1982)

    Google Scholar 

  46. Moreno, E.C., Zahradnik, R.T., Glazman, A., Hwu, R.: Precipitation of hydroxyapatite from dilute solutions upon seeding. Calcif. Tissue Res. 24, 47–57 (1977)

    Article  Google Scholar 

  47. Tomson, M.B., Nancollas, G.H.: Mineralization kinetics: a constant composition approach. Science 200, 1059–1060 (1978)

    Article  ADS  Google Scholar 

  48. Koutsoukos, P., Amjad, Z., Tomson, M.B., Nancollas, G.H.: Crystallization of calcium phosphate. A constant composition study. J. Am. Chem. Soc. 102, 1553–1557 (1980)

    Article  Google Scholar 

  49. Moreno, E.C., Varughese, K.: Crystal growth of calcium apatites from dilute solutions. J. Cryst. Growth 53, 20–30 (1981)

    Article  ADS  Google Scholar 

  50. Arends, J., Christoffersen, J., Christofferesen, M.R., Eckert, H., Fowler, B.O., Heughebaert, J.C., Nancollas, G.H., Yesinowski, J.P., Zawacki, S.J.: A calcium hydroxyapatite precipitated from an aqueous solution: an international multimethod analysis. J. Cryst. Growth 84, 515–532 (1987)

    Article  ADS  Google Scholar 

  51. Christoffersen, M.R., Christoffersen, J.: A revised theory for the growth of crystals by surface nucleation. J. Cryst. Growth 121, 608–616 (1992)

    Article  ADS  Google Scholar 

  52. Christoffersen, M.R., Christoffersen, J.: Possible mechanism for the growth of the biomaterial, hydroxyapatite microcrystals. J. Cryst. Growth 121, 617–630 (1992)

    Article  ADS  Google Scholar 

  53. Hayek, E., Lechleitner, J., Böhler, W.: Hydrothermalsynthese von Hydroxylapatit. Angew. Chem. 67, 326 (1955)

    Article  Google Scholar 

  54. Hayek, E., Böhler, W., Lechleitner, J.: Hydrothermalsynthese von Calsium-Apatiten. Z. Anorg. Allg. Chem. 295, 241–246 (1958)

    Article  Google Scholar 

  55. Perloff, A., Posner, A.S.: Preparation of pure hydroxyapatite crystals. Science 124, 583–584 (1956)

    Article  ADS  Google Scholar 

  56. Simpson, D.R.: Carbonate in hydroxyapatite. Science 147, 501–502 (1965)

    Article  ADS  Google Scholar 

  57. Jullman, H., Mosebach, R.: Zur Synthese, Licht- und Doppelbrechung des Hydroxylapatits. Z.Naturf. 21, 493–494 (1966)

    Google Scholar 

  58. Blakeslee, K.C., Condrate, R.A.: Vibration spectra of hydrothermally prepared hydroxyapatite. J.Am. Ceram. Soc. 54, 559–563 (1971)

    Article  Google Scholar 

  59. Baumer, A., Argiolas, R.: Synthèses hydrothermals et déterminations RX d’apatites chlorée, fluoree ou hydroxylée. Neues Jb. Miner. Mh. 344–348 (1981)

    Google Scholar 

  60. Mengeot, M., Harvill, M.L., Gilliam, O.R.: Hydrothermal growth of calcium hydroxyapatite single crystals. J. Cryst. Growth 19, 199–203 (1973)

    Article  ADS  Google Scholar 

  61. Arends, J., Schthof, J., van der Linden, W.H., Bennema, P., van den Berg, P.J.: Preparation of pure hydroxyapatite single crystals by hydrothermal recrystallization. J. Cryst. Growth 46, 213–220 (1979)

    Article  ADS  Google Scholar 

  62. Ito, A., Nakamura, S., Aoki, H., Akao, M., Teraoka, K., Tsutsumi, S., Onuma, K., Tateishi, T.: Hydrothermal growth of carbonate-containing hydroxyapatite single crystals. J. Cryst. Growth 163, 311–317 (1996)

    Article  ADS  Google Scholar 

  63. Mengeot, M.: Hydrothermal growth and electron-spin-resonance investigations of calcium hydroxyapatite single crystals. PhD Thesis, University of Connecticut (1975)

    Google Scholar 

  64. Eysel, W., Roy, D.M.: Hydrothermal flux growth of hydroxyapatites by temperature oscillation. J.Cryst. Growth 20, 245–250 (1973)

    Article  ADS  Google Scholar 

  65. Nakadate, S., Yamaguchi, I:. Japanese patent laid-open. H02-287107, (1990)

    Google Scholar 

  66. MacInnis, I., Onuma, K., Tsukamoto, K.: In situ study of dissolution kinetics of calcite crystal using phase shift interferometry. In: Proceedings Sixth Topical Meeting on Crystal Growth Mechanism, pp. 233–238 (1993)

    Google Scholar 

  67. Maruyama, M., Tsukamoto, K., Sazaki, G., Nishimura, Y., Vekilov, P.: Chiral and achiral mechanisms of regulation of calcite crystallization. Cryst. Growth & Des. 9, 127–135 (2009)

    Article  Google Scholar 

  68. Kanzaki, N., Onuma, K., Ito, A., Teraoka, K., Tateishi, T., Tsutsumi, S.: Direct growth rate measurement of hydroxyapatite single crystal by Moire phase shift interferometry. J. Phys. Chem. B 102, 6471–6476 (1998)

    Article  Google Scholar 

  69. Onuma, K., Kanzaki, N., Ito, A., Tateishi, T.: Growth kinetics of hydroxyapatite (0001) face revealed by phase shift interferometry and atomic force microscopy. J. Phys. Chem. B 102, 7833–7838 (1998)

    Article  Google Scholar 

  70. Markov, I.V.: Crystal growth for beginners: fundamental of nucleation, crystal growth and epitaxy. World Scientific Publishing, Singapore (1995)

    Google Scholar 

  71. Kanzaki, N., Onuma, K., Treboux, G., Tsutsumi, S., Ito, A.: Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face. J. Phys. Chem. B 104, 4189–4194 (2000)

    Article  Google Scholar 

  72. Kanzaki, N., Onuma, K., Treboux, G., Tsutsumi, S., Ito, A.: Effect of impurity on two-dimensional nucleation kinetics: case studies of magnesium and zinc on hydroxyapatite (0001) face. J. Phys. Chem. B 105, 1991–1994 (2001)

    Article  Google Scholar 

  73. Amjad, Z., Koutsoukos, P., Nancollas, G.H.: The crystallization of hydroxyapatite and fluorapatite in the presence of magnesium ions. J. Colloid Interface Sci. 101, 250–256 (1984)

    Article  Google Scholar 

  74. Dalpi, M., Karayianni, E., Koutsoukos, P.: Inhibition of hydroxyapatite formation in aqueous solutions by zinc and 1,2-dihydroxy-1,2-bis(dihydroxyphosphonyl)ethane J. Chem. Soc. Faraday Trans. 89, 965–969 (1993)

    Article  Google Scholar 

  75. Fuierer, T.A., LoRe, M., Puckett, S.A., Nancollas, G.H.: A mineralization adsorption and mobility study of hydroxyapatite surfaces in the presence of zinc and magnesium. Langmuir 10, 4721–4725 (1994)

    Article  Google Scholar 

  76. Liu, X.Y., Maiwa, K., Tsukamoto, K.: Heterogeneous two-dimensional nucleation and growth kinetics. J. Chem. Phys. 106, 1870–1879 (1997)

    Article  ADS  Google Scholar 

  77. Onuma, K., Ito, A., Tateishi, T., Kameyama, T.: Growth kinetics of hydroxyapatite revealed by atomic force microscopy. J. Cryst. Growth 154, 118–125 (1995)

    Article  ADS  Google Scholar 

  78. Horn, D., Rieger, J.: Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew. Chem. Int. ed. 40, 4330–4361 (2001)

    Article  Google Scholar 

  79. Furrer, G., Phillips, B.L., Ulrich, K.U., Pothig, R., Casey, W.H.: The origin of aluminum flocs in polluted streams. Science 297, 2245–2247 (2002)

    Article  ADS  Google Scholar 

  80. Navrotsky, A.: Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 101, 12096–12101 (2004)

    Article  ADS  Google Scholar 

  81. Onuma, K., Ito, A.: Cluster growth model for hydroxyapatite. Chem. Mat. 10, 3346–3351 (1998)

    Article  Google Scholar 

  82. Oyane, A., Onuma, K., Kokubo, T., Ito, A.: Clustering of calcium phosphate in the system CaCl2-H3PO4-KCl-H2O. J. Phys. Chem. B 103, 8230–8235 (1999)

    Article  Google Scholar 

  83. Treboux, G., Kanzaki, N., Onuma, K., Ito, A.: Energy-preeminent isomer of the Ca3(PO4)2 cluster. J. Phys. Chem. A 103, 8118–8120 (1999)

    Article  Google Scholar 

  84. Treboux, G., Layrolle, P., Kanzaki, N., Onuma, K., Ito, A.: Existence of Posner’s cluster in vacuum. J. Phys. Chem. A 104, 5111–5114 (2000)

    Article  Google Scholar 

  85. Treboux, G., Layrolle, P., Kanzaki, N., Onuma, K., Ito, A.: Symmetry of Posner’s cluster. J.Am. Chem. Soc. 122, 8323–8324 (2000)

    Article  Google Scholar 

  86. Kanzaki, N., Treboux, G., Onuma, K., Tsutsumi, S., Ito, A.: Calcium phosphate clusters. Biomaterials 22, 2921–2929 (2001)

    Article  Google Scholar 

  87. Gebauer, D., Völkel, A., Cölfen, H.: Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008)

    Article  ADS  Google Scholar 

  88. Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., Penn, R.L.: Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Onuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Onuma, K., Tsuji, T., Iijima, M. (2012). Biomineralization: Mechanisms of Hydroxyapatite Crystal Growth. In: Liu, X. (eds) Bioinspiration. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5372-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5372-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5303-1

  • Online ISBN: 978-1-4614-5372-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics