Skip to main content

Survival from the Cold Winter: Freezing and Ice Crystallization Inhibition by Antifreeze Proteins

  • Chapter
  • First Online:
Bioinspiration

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1796 Accesses

Abstract

Antifreeze proteins (AFPs), occurring in some polar animals, plants, fungi, and other organisms, are capable of inhibiting ice freezing at subzero temperatures. The application of AFPs can be found in medicine and industry where low temperature storage is required and ice crystallization is damaging. This includes improved protection of blood platelets and human organs at low temperature, increasing the effectiveness of the destruction of malignant tumors in cryosurgery, and improvement of the smooth texture of frozen foods. In this review, the antifreeze mechanisms of AFPs are discussed, focusing on their inhibition effects on both ice nucleation and crystal growth. AFPs have been found to act in two stages. As a precursor to ice growth, ice nucleation is suppressed by the surface adsorption of AFPs to both ice nucleus and ice nucleators. At the second stage, in cases where inhibition of ice nucleation has had partial or no success, AFPs proceed to inhibit the growth of ice by adsorbing on specific surfaces of ice. Based on the understanding of structure–activity relationship, one is able to mimic the active domain of AFGPs and synthesize antifreeze glycoproteins by using ligation and polymerization strategies. However, further optimization of the chemistry, as well as new routes to mimic AFPs and functional analogues are needed to allow the routine production of quantities of pure material on commercially relevant scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mutaftschiev, B.: In: Hurle, D.T.J. (ed.) Handbook of Crystal Growth. North-Holland, Amsterdam, The Netherlands (1993)

    Google Scholar 

  2. Davies, P.L., Sykes, B.D.: Antifreeze proteins. Curr. Opin. Struct. Biol. 7, 828–834 (1997)

    Article  Google Scholar 

  3. Davies, P.L., Hew, C.L.: Biochemistry of fish antifreeze proteins. FASEB J. 4, 2460–2468 (1990)

    Google Scholar 

  4. Knight, C.A.: Adding to the antifreeze agenda. Nature 406, 249–251 (2000)

    Article  ADS  Google Scholar 

  5. Jia, Z.C., Davies, P.L.: Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem. Sci. 27, 101–106 (2002)

    Article  Google Scholar 

  6. Liu, X.Y.: Simulating ‘atomic’ processes of crystallization via controlled colloidal assembly. In: Wang, M., Tsukamoto, K., Wu, D. (eds.) Selected Topics on Crystal Growth: 14th International Summer School on Crystal Growth, pp. 173–220. American Institute of Physics, Dalian (2010)

    Google Scholar 

  7. Liu, X.Y.: From templated nucleation to functional materials engineering. In: Skowronski, M., DeYoreo, J.J., Wang, C.A. (eds.) Perspectives on Inorganic, Organic and Biological Crystal Growth: from Fundamentals to Applications, pp. 439–465. American Institute of Physics, Park City, UT (2007)

    Google Scholar 

  8. Liu, X.Y.: From molecular structure of solid–fluid interfaces to nucleation kinetics: implications for nanostructure engineering. In: De Yoreo, J., Liu, X.Y. (eds.) Nanoscale Structure and Assembly at Solid–Fluid Interfaces. 1, Springer (2004)

    Google Scholar 

  9. Liu, X.Y.: Generic mechanism of heterogeneous nucleation and molecular interfacial effects. In: Sato, K., Nakajima, K., Furukawa, Y. (eds.) Advances in Crystal Growth Research, pp. 42–61. Elsevier Science B.V., Amsterdam (2001)

    Chapter  Google Scholar 

  10. Koop, T., et al.: A new optical technique to study aerosol phase transitions: the nucleation of ice from H2SO4 aerosols. J. Phys. Chem. A 102(45), 8924–8931 (1998)

    Article  Google Scholar 

  11. Hare, D.E., Sorensen, C.M.: The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit. J. Chem. Phys. 87(8), 4840–4845 (1987)

    Article  ADS  Google Scholar 

  12. Liu, X.Y., Du, N.: Zero-sized effect of nano-particles and inverse homogeneous nucleation: principles of freezing and antifreeze. J. Biol. Chem. 279, 6124–6131 (2004)

    Article  Google Scholar 

  13. Liu, X.Y., et al.: Prediction of crystal growth morphology based on structural analysis of the solid–fluid interface. Nature 374(6520), 342–345 (1995)

    Article  ADS  Google Scholar 

  14. Liu, X.-Y., Bennema, P.: Morphology of crystals: internal and external controlling factors. Phys. Rev. B 49(2), 765–775 (1994)

    Article  ADS  Google Scholar 

  15. Liu, X.Y., et al.: Analysis of morphology of crystals based on identification of interfacial structure. J. Chem. Phys. 103(9), 3747–3754 (1995)

    Article  ADS  Google Scholar 

  16. Liu, X.-Y., Bennema, P.: Theoretical consideration of the growth morphology of crystals. Phys. Rev. B 53(5), 2314–2325 (1996)

    Article  ADS  Google Scholar 

  17. Liu, X.Y.: Modeling of the fluid-phase interfacial effect on the growth morphology of crystals. Phys. Rev. B 60(4), 2810–2817 (1999)

    Article  ADS  Google Scholar 

  18. DeVries, A.L.: Survival at freezing temperatures. In: Sargent, J.M., Malins, D.C. (eds.) Biochemical and Biophysical Perspectives in Marine Biology, pp. 289–330. Academic Press, London (1974)

    Google Scholar 

  19. Duman, J.G., Olsen, T.M.: Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30, 322–328 (1993)

    Article  Google Scholar 

  20. Yeh, Y., Feeney, R.E.: Antifreeze proteins-structures and mechanisms of function. Chem. Rev. 96, 601–617 (1996)

    Article  Google Scholar 

  21. Graham, L.A., Liou, Y.-C., Walker, V.K., Davies, P.L.: Hyperactive antifreeze protein from beetles. Nature 388, 727–728 (1997)

    Article  ADS  Google Scholar 

  22. Scholander, P.F., Dam, L.V., Kanwisher, J., Hammel, T., Gordon, M.S.: Supercooling and osmoregulation in Arctic fish. J. Cell. Comp. Physiol. 49, 5–24 (1957)

    Article  Google Scholar 

  23. Gordon, M.S., Amdur, B.H., Scholander, P.F.: Freezing resistance in some northern fishes. Biol. Bull. 122, 52–62 (1962)

    Article  Google Scholar 

  24. DeVries, A.L.: Freezing resistance in some Antarctic fishes. Science 163, 1073–1075 (1969)

    Article  ADS  Google Scholar 

  25. DeVries, A.L., Komatsu, S.K., Feeney, R.E.: Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J. Biol. Chem. 245, 2901–2908 (1970)

    Google Scholar 

  26. Duman, J.G., DeVries, A.L.: Freezing behaviour of aqueous solutions of glycoproteins from the blood of an Antarctic fish. Cryobiology 9, 469–472 (1972)

    Article  Google Scholar 

  27. Lin, Y., Duman, J.G., DeVries, A.L.: Studies on the structure and activity of lowmolecular weight glycoproteins from an Antarctic fish. Biochem. Biophys. Res. Commun. 46, 87–92 (1972)

    Article  Google Scholar 

  28. Raymond, J.A., DeVries, A.L.: Freezing behaviour of fish blood glycoproteins with antifreeze properties. Cryobiology 9, 541–547 (1972)

    Article  Google Scholar 

  29. Scholander, P.F., Maggert, J.E.: Supercooling and ice propagation in blood from Arctic fishes. Cryobiology 8, 371–374 (1971)

    Article  Google Scholar 

  30. Fletcher, G.L., Hew, C.L., Davies, P.L.: Antifreeze proteins of Teleost fishes. Annu. Rev. Physiol. 63, 359–390 (2001)

    Article  Google Scholar 

  31. Jia, Z., Davies, P.L.: Antifreeze proteins: an unusual receptor–ligand interaction. Trends Biochem. Sci. 2, 101–106 (2002)

    Article  Google Scholar 

  32. Duman, J.G., DeVries, A.L.: Freezing resistance in winter flounder Pseudopleuronectus americanus. Nature 247, 237–238 (1974)

    Article  ADS  Google Scholar 

  33. Ng, N.F., Trinh, K.-Y., Hew, C.L.: Structure of an antifreeze polypeptide precursor from the sea raven, Hemitripterus americanus. J. Biol. Chem. 261, 15690–15695 (1986)

    Google Scholar 

  34. Jia, Z.C., Deluca, C.I., Davies, P.L.: Crystallization and preliminary X-ray crystallographic studies on type III antifreeze protein. Protein Sci. 4, 1236–1238 (1995)

    Article  Google Scholar 

  35. Deng, G.J., Andrews, D.W., Laursen, R.A.: Amino acid sequence of a new type of antifreeze protein—from the longhorn sculpin Myoxocephalus octodecimspinosis. FEBS Lett. 402, 17–20 (1997)

    Article  Google Scholar 

  36. DeVries, A.L.: Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172, 1152–1155 (1971)

    Article  ADS  Google Scholar 

  37. Ramsay, R.A.: The rectal complex of the mealworm (Tenebrio molitor L. Coleoptera, Tenebrionidae). Philos. Trans. R. Soc. London Ser. B 248, 279–314 (1964)

    Article  ADS  Google Scholar 

  38. Duman, J.G.: Subzero temperature tolerance in spiders: the role of thermal hysteresis factors. J. Comp. Physiol. 131, 347–352 (1979)

    Google Scholar 

  39. Block, W., Duman, J.G.: Presence of thermal hysteresis producing antifreeze proteins in the Antarctic mite Alaskozetes antarcticus. J. Exp. Zool. 250, 229–231 (1989)

    Article  Google Scholar 

  40. Tursman, D., Duman, J.G., Knight, C.A.: Freeze tolerance adaptations in the centipede Lithobius forficatus. J. Exp. Zool. 268, 347–353 (1994)

    Article  Google Scholar 

  41. Duman, J.G.: Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu. Rev. Physiol. 63, 327–357 (2001)

    Article  Google Scholar 

  42. Urrutia, M.E., Duman, J.G., Knight, C.A.: Plant thermal hysteresis proteins. Biochim. Biophys. Acta 1121, 199–206 (1992)

    Article  Google Scholar 

  43. Pauling, L.: The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)

    Article  Google Scholar 

  44. Strom, C.S., Liu, X.Y., Jia, Z.: Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism. J. Am. Chem. Soc. 127, 428–440 (2005)

    Article  Google Scholar 

  45. Zhang, K.-Q., Liu, X.Y.: In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature 429(6993), 739–743 (2004)

    Article  ADS  Google Scholar 

  46. Liu, X.Y.: From molecular structure of solid-fluid interfaces to nucleation kinetics: implications for nanostructure engineering. In Nanoscale structure and assembly at solid-fluid interfaces, edited by X.Y. Liu, and James J. De Yoreo, Springer, London, Vol.I, p. 109–175 (2004)

    Google Scholar 

  47. Fowler, R., Giggenhein, E.A.: Statistical Thermoddynamics. Cambrideg University, London (1960)

    Google Scholar 

  48. Diao, Y.Y., Liu, X.Y.: Controlled colloidal assembly: experimental modeling of general crystallization and biomimicking of structural color. Adv. Funct. Mater. 22(7), 1354–1375 (2012)

    Article  Google Scholar 

  49. Liu, X.Y.: Generic mechanism of heterogeneous nucleation and molecular interfacial effects. In Advances in Crystal Growth Research, edited by K.Sato, K.Nakajima and Y. Furukawa ELSEVIER SCIENCE B.V., Amsterdam, 42–61 (2001)

    Google Scholar 

  50. Liu, X.Y.: A new kinetic model for 3D heterogeneous nucleation, compared with experiments. J. Chem. Phys. 111, 1628–1635 (1999)

    Article  ADS  Google Scholar 

  51. Du, N., Liu, X.Y.: Controlled ice nucleation in microsized water droplet. Appl. Phys. Lett. 81, 445–447 (2002)

    Article  ADS  Google Scholar 

  52. Rasmussen, D.H.: Thermodynamics and nucleation phenomena—a set of experimental observations. J. Cryst. Growth 56, 56–66 (1982)

    Article  ADS  Google Scholar 

  53. Mullin, J.W.: Crystallization, pp. 182–194. Butterworth-Heinemann, Oxford (1997)

    Google Scholar 

  54. Du, N., Liu, X.Y.: Ice nucleation inhibition: mechanism of antifreeze by antifreeze protein. J. Biol. Chem. 278, 36000–36004 (2003)

    Article  Google Scholar 

  55. Liu, X.-Y., Bennema, P., van der Eerden, J.P.: Rough-flat-rough transition of crystal surfaces. Nature 356(6372), 778–780 (1992)

    Article  ADS  Google Scholar 

  56. Liu, X.-Y., van Hoof, P., Bennema, P.: Surface roughening of normal alkane crystals: solvent dependent critical behavior. Phys. Rev. Lett. 71(1), 109–112 (1993)

    Article  ADS  Google Scholar 

  57. Liu, X.-Y., Bennema, P.: The equilibrium state of solid–liquid interfaces of aliphatic compounds. J. Chem. Phys. 97(5), 3600–3609 (1992)

    Article  ADS  Google Scholar 

  58. Liu, X.-Y.: First-order thermal roughening of normal alkane crystals. Phys. Rev. B 48(3), 1825–1829 (1993)

    Article  ADS  Google Scholar 

  59. Liu, X.-Y., Bennema, P.: Self-consistent-field calculation of structures and static properties of the solid–fluid interface: paraffinlike molecule systems. Phys. Rev. E 48(3), 2006–2015 (1993)

    Article  ADS  Google Scholar 

  60. Liu, X.-Y., Bennema, P.: The relation between macroscopic quantities and the solid–fluid interfacial structure. J. Chem. Phys. 98(7), 5863–5872 (1993)

    Article  ADS  Google Scholar 

  61. Xiang-Yang, L.: The solid–fluid interface: a comparison and further description using the layer model. Surf. Sci. 290(3), 403–412 (1993)

    Article  ADS  Google Scholar 

  62. Liu, X.-Y.: Properties and structure of crystal-solution interfaces of normal alkane crystals: influence of solvents. J. Chem. Phys. 102(3), 1373–1384 (1995)

    Article  ADS  Google Scholar 

  63. Liu, X.Y., et al.: Can a foreign particle cause surface instability? J. Phys. Chem. B 104(50), 11942–11949 (2000)

    Article  Google Scholar 

  64. Liu, X.Y.: Effect of foreign particles on the growth of faceted crystal faces. J. Chem. Phys. 113(19), 8807–8816 (2000)

    Article  ADS  Google Scholar 

  65. Liu, X.Y., Bennema, P.: Foreign body induced kinetic roughening: kinetics and observations. J. Chem. Phys. 115(9), 4268–4274 (2001)

    Article  ADS  Google Scholar 

  66. Zhang, K.-Q., Liu, X.Y.: Two scenarios for colloidal phase transitions. Phys. Rev. Lett. 96(10), 105701 (2006)

    Article  ADS  Google Scholar 

  67. Liu, X.Y., Maiwa, K., Tsukamoto, K.: Heterogeneous two-dimensional nucleation and growth kinetics. J. Chem. Phys. 106(5), 1870–1879 (1997)

    Article  ADS  Google Scholar 

  68. Chernov, A.A.: Modern Crystallography III Crystal Growth. Springer Verlag, Berlin (1984)

    Google Scholar 

  69. Liu, X.Y.: Interfacial effect of molecules on nucleation kinetics. J. Phys. Chem. B 105(47), 11550–11558 (2001)

    Article  Google Scholar 

  70. Strom, C. S.: Graph-theoretic construction of Periodic Bond Chains I, General Case. Z. Kristallogr. 153, 99–113 (1980)

    Google Scholar 

  71. Hartman, P.: The dependence of crystal morphology on crystal structure. In: Sheftal, N.N. (ed.) Growth of Crystals, pp. 3–18. Consultants Bureau, New York (1969)

    Google Scholar 

  72. Strom, C.S.: Ionic crystals. In: Myerson, A.S. (ed.) Molecular Modeling Applications in Crystallization, pp. 228–312. Cambridge University Press, New York (1999)

    Chapter  Google Scholar 

  73. Donnay, J.D.H.: Spherical Trigonometry after the Cesàro Method. Interscience Publishers, Inc., New York, NY (1945)

    Google Scholar 

  74. Hartman, P., Perdok, W.G.: On the relations between structure and morphology of crystals. II. Acta Crystallogr. 8(9), 521–524 (1955)

    Article  Google Scholar 

  75. Hartman, P., Perdok, W.G.: On the relations between structure and morphology of crystals. III. Acta Crystallogr. 8(9), 525–529 (1955)

    Article  Google Scholar 

  76. Hartman, P., Perdok, W.G.: On the relations between structure and morphology of crystals. I. Acta Crystallogr. 8(1), 49–52 (1955)

    Article  Google Scholar 

  77. Hartman, P., Bennema, P.: The attachment energy as a habit controlling factor: I. Theoretical considerations. J. Cryst. Growth 49(1), 145–156 (1980)

    Article  ADS  Google Scholar 

  78. Bennema, P.: Thermodynamics and kinetics. In: Hurle, D.T.J. (ed.) Handbook of Crystal Growth 1a Fundamentals, pp. 477–581. Elsevier, Amsterdam (1993)

    Google Scholar 

  79. Strom, C.S., Liu, X.Y., Jia, Z.: Antifreeze protein-induced morphological modification mechanisms linked to ice binding surface. J. Biol. Chem. 279, 32407–32417 (2004)

    Article  Google Scholar 

  80. Strom, C.S., Liu, X.Y., Jia, Z.: Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites? Biophys. J. 89, 2618–2627 (2005)

    Article  Google Scholar 

  81. Baardsnes J., Jelokhani-Niaraki, M., Kondejewski, L.H., Kuiper, M.J., Kay, C.M., Hodges, R.S., Davies, P.L. Antifreeze protein from shorthorn sculpin: identification of the ice-binding surface. Protein Sci. 10, 2566–2576 (2001)

    Google Scholar 

  82. Zhang, W.L.: Artificial antifreeze polypeptides: α-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties. FEBS Lett. 455, 372–376 (1999)

    Article  Google Scholar 

  83. Fairley, K., Westman, B.J., Pham, L.H., Haymet, A.D. J., Harding, M.M., Mackay, J.P. Type I shorthorn sculpin antifreeze protein - Recombinant synthesis, solution conformation, and ice growth inhibition studies. J. Biol. Chem. 277, 24073–24080 (2002).

    Article  Google Scholar 

  84. Houston, M.E., Chao, H., Hodges, R.S., Sykes, B.D., Kay, C.M., Sonnichsen, F.D., Loewen, M.C., Davies, P.L.: Binding of an oligopeptide to a specific plane of ice. J. Biol. Chem. 273, 11714–11718 (1998)

    Article  Google Scholar 

  85. Wierzbicki, A., Taylor, M.S., Knight, C.A., Madura, J.D., Harrington, J.P., Sikes, C.S.: Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2–10) faces of ice. Biophys. J. 71, 8–18 (1996)

    Article  Google Scholar 

  86. Harding, M.M., Anderberg, P.I., Haymet, A.D.J.: ‘Antifreeze’ glycoproteins from polar fish. Eur. J. Biochem. 270(7), 1381–1392 (2003)

    Article  Google Scholar 

  87. Wilson, P.W., Gould, M., Devries, A.L. Hexagonal shaped ice spicules in frozen antifreeze protein solutions. Cryobiology 44, 240–250 (2002)

    Google Scholar 

  88. Harding, M.M., Ward, L.G., Haymet, A.D. Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition. Eur J Biochem, 264, 653–665 (1999).

    Google Scholar 

  89. Haymet, A.D., Ward, L.G., Harding, M.M., Knight, C.A.: Valine substituted winter flounder ‘antifreeze’: preservation of ice growth hysteresis. FEBS Lett. 430, 301–306 (1998)

    Article  Google Scholar 

  90. Ewart, K.V., Yang, D.S.C., Ananthanarayanan, V.S., Fletcher, G.L., Hew, C.L.: Ca2+-dependent antifreeze proteins modulation of conformation and activity by divalent ions. J. Biol. Chem. 271, 16627–16632 (1996)

    Article  Google Scholar 

  91. Nishimiya, Y., Ohgiya, S., Tsuda, S. : Artificial Multimers of The Type III Antifreeze Protein: Effects on Thermal Hysteresis and Ice Crystal Morphology. J. Biol. Chem., 278, 32307–32312 (2003).

    Article  Google Scholar 

  92. Graether, S.P., Kuiper, M.J., Gagn, S.M., Walker, V.K., Jia, Z., Sykes, B.D., Davies, P.L.: β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406, 325–328 (2000)

    Article  ADS  Google Scholar 

  93. Wathen, B., Kuiper, M., Walker, V., Jia, Z. A new model for simulating 3D crystal growth and its application to the study of antifreeze proteins. J. Am. Chem. Soc. 125, 729–737 (2003).

    Article  Google Scholar 

  94. Liou, Y.-C., Tocilj, A., Davies, P.L., Jia, Z.: Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406, 322–324 (2000)

    Article  ADS  Google Scholar 

  95. Baardsnes, J., Kondejewski, L.H., Hodges, R.S., Chao, H., Kay, C., Davies, P.L.: New ice-binding face for type I antifreeze protein. FEBS Lett. 463, 87–91 (1999)

    Article  Google Scholar 

  96. Bouvet, V., Ben, R.N.: Antifreeze glycoproteins structure, conformation, and biological applications. Cell Biochem. Biophys. 39, 133–144 (2003)

    Article  Google Scholar 

  97. Inglis, S.R., Turner, J.J., Harding, M.M.: Applications of type I antifreeze proteins: studies with model membranes & cryoprotectant properties. Curr. Protein Pept. Sci. 7, 509–522 (2006)

    Article  Google Scholar 

  98. Aguilera, G.P.J.M.: Ice morphology: fundamentals and technological applications in foods. Food Biophys. 4, 378–396 (2009)

    Article  Google Scholar 

  99. Baust, J.M.: Molecular mechanisms of cellular demise associated with cryopreservation failure. Cell Preserv. Technol. 1, 17–31 (2002)

    Article  Google Scholar 

  100. Glander, A.J., Schaller, J.: Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol. Hum. Reprod. 5, 109–115 (1999)

    Article  Google Scholar 

  101. Baust, J.M., Van Buskirk, R.G., Baust, J.G.: Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell. Dev. Biol. Anim. 36, 262–270 (2000)

    Article  Google Scholar 

  102. Fowke, K.R., Behnke, J., Hanson, C., Shea, K., Cosentino, M.: Apoptosis: a method for evaluating the cryopreservation of whole blood mononuclear cells. J. Immunol. Methods 244, 139–144 (2000)

    Article  Google Scholar 

  103. Hilbert, S.L., Luna, R.E., Zhang, J., Wang, Y., Hopkins, R.A., Yu, Z.X., Ferran, V.T.: Allograft heart valves: the role of apoptosismediated cell loss. J. Thorac. Cardiovasc. Surg. 117, 454–462 (1999)

    Article  Google Scholar 

  104. Villalba, R., Pena, J., Luque, E., Gomez-Villagran, J.L.: Characterization of ultrastructural damage of valves cryopreserved under standard conditions. Cryobiology 43, 81–84 (2001)

    Article  Google Scholar 

  105. Mazur, P.: Kinetic of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J. Gen. Physiol. 47, 347–369 (1963)

    Article  Google Scholar 

  106. Arav, A., Yavin, S., Zeron, Y., Natan, D., Dekel, I., Gacitua, H.: New trends in gamete’s cryopreservation. Mol. Cell. Endocrinol. 187, 77–81 (2002)

    Article  Google Scholar 

  107. Marsland, T.P., Evans, S., Pegg, D.E.: Dielectric measurements for design of an electromagnetic rewarming system. Cryobiology 24, 311–323 (1981)

    Article  Google Scholar 

  108. Robinson, M.P., Pegg, D.E.: Rapid electromagnetic warming of cells and tissues. IEEE Trans. Biomed. Eng. 46, 1413–1425 (1999)

    Article  Google Scholar 

  109. Pegg, D.E.: The history and principles of cryopreservation. Semin. Reprod. Med. 20, 5–13 (2002)

    Article  Google Scholar 

  110. Rubinsky, B., Arav, A., Devries, A.L.: Cryopreservation of oocytes using directional cooling and antifreeze glycoproteins. Cryo Lett. 12, 93–106 (1991)

    Google Scholar 

  111. Eto, T.K., Rubinsky, B.: Antifreeze glycoproteins increase solution viscosity. Biochem. Biophys. Res. Commun. 197, 927–931 (1993)

    Article  Google Scholar 

  112. Wu, Y., Banoub, J., Goddard, S.V., Kao, M.H., Fletcher, G.L.: Antifreeze glycoproteins: relationship between molecular weight, thermal hysteresis and the inhibition of leakage from liposomes during thermotropic phase transition. Comp. Biochem. Physiol. B 128, 265–273 (2001)

    Article  Google Scholar 

  113. Pickering, S.J., Braude, P.R., Johnson, M.H., Can, A., Currie, J.: Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil. Steril. 54, 102–108 (1990)

    Google Scholar 

  114. Pickering, S.J., Johnson, M.H.: The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum. Reprod. 2, 207–216 (1987)

    Google Scholar 

  115. O’Neil, L., Paynter, S.J., Fuller, B.J., Shaw, R.W., DeVries, A.L.: Vitrification of mature mouse oocytes in a 6 M Me2SO solution supplemented with antifreeze glycoproteins: The effect of temperature. Cryobiology 37, 59–66 (1998)

    Article  Google Scholar 

  116. Vincent, C., Johnson, M.H.: Cooling, cryoprotectants, and the cytoskeleton of the mammalian oocyte. Oxford Rev. Reprod. Biol. 14, 73–100 (1992)

    Google Scholar 

  117. Rubinsky, B., Arav, A., Devries, A.L.: The cryoprotective effect of antifreeze glycopeptides from Antarctic fishes. Cryobiology 29, 69–79 (1992)

    Article  Google Scholar 

  118. Storey, K.B., Bischof, J., Rubinsky, B.: Cryomicroscopic analysis of freezing in liver of the freeze tolerant wood frog. Am. J. Physiol. 263, R185–R194 (1992)

    Google Scholar 

  119. Hincha, D.K., Devries, A.L., Schmitt, J.M.: Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes—comparison with cryotoxic sugar acids. Biochim. Biophys. Acta 1146, 258–264 (1993)

    Article  Google Scholar 

  120. Cheng, C., Devries, A.L.: Do antifreeze proteins have a role in maintenance of ion gradients across cell membranes in polar fishes and invertebrates? Cryobiology 29, 783 (1992)

    Google Scholar 

  121. Payne, S.R., Oliver, J.E., Upreti, G.C.: Effect of antifreeze proteins on the motility of ram spermatozoa. Cryobiology 31, 180–184 (1994)

    Article  Google Scholar 

  122. Hays, L., Feeney, R.E., Crowe, L.M., Crowe, J.H., Oliver, A.E.: Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc. Natl. Acad. Sci. U.S.A. 93, 6835–6840 (1996)

    Article  ADS  Google Scholar 

  123. Quinn, P.J.: A liquid-phase separation model of low temperature damage to biological membranes. Cryobiology 22, 128–146 (1995)

    Article  Google Scholar 

  124. Clerc, S.G., Thompson, T.G.: Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer-membranes with coexisting gel and liquid-crystalline phases. Biophys. J. 68, 2333–2341 (1995)

    Article  ADS  Google Scholar 

  125. Wu, Y., Fletcher, G.L.: Efficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid class. Biochim. Biophys. Acta 1524, 11–16 (2000)

    Article  Google Scholar 

  126. Knight, C.A., Driggers, E., Devries, A.L.: Adsorption to ice of fish antifreeze glycopeptide-7 and glycopeptide-8. Biophys. J. 64, 252–259 (1993)

    Article  ADS  Google Scholar 

  127. Franks, F., Morris, E.R.: Blood glycoprotein from Antarctic fish. Possible conformational origins of antifreeze activity. Biochem. Biophys. Acta 540, 346–356 (1978)

    Article  Google Scholar 

  128. Tomczak, M.M., Hincha, D.K., Estrada, S.D., Wolkers, W.F., Crowe, L.M., Feeney, R.E., Tablin, F., Crowe, J.H.: A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophys. J. 82, 874–881 (2002)

    Article  Google Scholar 

  129. Tomczak, M.A.C.: In: Ewart, K.V., Hew, C.L. (eds.) Fish Antifreeze Proteins. World Scientific Publishing, Singapore, pp. 187–212 (2002)

    Google Scholar 

  130. Tomczak, M.M., Hincha, D.K., Crowe, J.H., Harding, M.M., Haymet, A.D.J., Ward, L.G., Harding, M.M.: The effect of hydrophobic analogues of the type I winter flounder antifreeze protein on lipid bilayers. FEBS Lett. 551, 13–19 (2003)

    Article  Google Scholar 

  131. Haymet, A.D.J., Ward, L.G., Harding, M.M.: winter flounder antifreeze proteins: synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen bonding interactions. J. Am. Chem. Soc. 121, 941–948 (1999)

    Article  Google Scholar 

  132. Hartel, R.W.: Crystallization in Foods. Aspen, Gaithersburg (2001)

    Google Scholar 

  133. Li, B., Sun, D.-W.: Novel method for rapid freezing and thawing of foods—a review. J. Food Eng. 54, 175–182 (2002)

    Article  Google Scholar 

  134. Warren, G.J., Mueller, G.M., McKown, R.L.: Ice crystal growth suppression polypeptides and method of making. US Patent (1992)

    Google Scholar 

  135. Payne, S.R., Sandford, D., Harris, A., Young, O.A.: The effects of antifreeze proteins on chilled and frozen meats. Meat Sci. 37, 429–438 (1994)

    Article  Google Scholar 

  136. Payne, S.R., Young, O.A.: Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality. Meat Sci. 41, 147–155 (1995)

    Article  Google Scholar 

  137. Boonsupthip, W., Lee, T.-C.: Application of antifreeze protein for food preservation: effect of type III antifreeze protein for preservation of gel forming of frozen and chilled actomyosin. Food Sci. 68, 1804–1809 (2003)

    Article  Google Scholar 

  138. Aldred, D.L., Berry, M.J., Cebula, D.J., Cox, A.R., Golding, M.D., Golding, S., Keenan, R.D., Malone, M.E., Twigg, S.: Frozen products. US Patent (2006)

    Google Scholar 

  139. Sun, D.-W., Zheng, L.: Innovations in freezing process. In: Sun, D.-W. (ed.) Handbook of Frozen Food Processing and Packaging, pp. 175–195. CRC Press, Boca Raton (2006)

    Google Scholar 

  140. Tachibana, Y., Fletcher, G.L., Fujitani, N., Tsuda, S., Monde, K., Nishimura, S.: Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angew. Chem. Int. Ed. 43, 856–862 (2004)

    Article  Google Scholar 

  141. Tsuda, T., Nishimura, S.I.: Synthesis of an antifreeze glycoprotein analogue: Efficient preparation of sequential glycopolymers. Chem. Commun. 24, 2779–2780 (1996)

    Article  Google Scholar 

  142. Harding, M.M., Garner, J.: Design and synthesis of antifreeze glycoproteins and mimics. ChemBioChem 11, 2489–2498 (2010)

    Article  Google Scholar 

  143. Tachibana, Y., Matsubara, N., Nakajima, F., Tsuda, T., Tsuda, S., Monde, K., Nishimura, S.-I.: Efficient and versatile synthesis of mucin-like glycoprotein mimics. Tetrahedron 58, 10213–10224 (2002)

    Article  Google Scholar 

  144. Wierzbicki, A., Dalal, P., Cheatham III, T.E., Knickelbein, J.E., Haymet, A.D.J., Madura, J.D.: Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins. Biophys. J. 93, 1442–1451 (2007)

    Article  ADS  Google Scholar 

  145. Harding, M.M., Ward, L.G., Haymet, A.D.J.: Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition. Eur. J. Biochem. 264, 653–665 (1999)

    Article  Google Scholar 

  146. Nguyen, D.H., Colvin, M.E., Yeh, Y., Feeney, R.E., Fink, W.H.: The dynamics, structure, and conformational free energy of proline-containing antifreeze glycoprotein. Biophys. J. 82, 2892–2905 (2002)

    Article  Google Scholar 

  147. Corzana, F., Busto, J.H., Jimenez-Oses, G., Garcia de Luis, M., Asensio, J.L., Jimenez-Barbero, J., Peregrina, J.M., Avenoza, A.: Serine versus threonine glycosylation: the methyl group causes a drastic alteration on the carbohydrate orientation and on the surrounding water shell. J. Am. Chem. Soc. 129, 9458–9467 (2007)

    Article  Google Scholar 

  148. Uda, Y., Zepeda, S., Kaneko, F., Matsuura, Y., Furukawa, Y.: Adsorption-induced conformational changes of antifreeze glycoproteins at the ice/water interface. J. Phys. Chem. B 111, 14355–14361 (2007)

    Article  Google Scholar 

  149. Sarno, D.M., Murphy, A.V., DiVirgilio, E.S., Jones Jr., W.E., Ben, R.N.: Direct observation of antifreeze glycoprotein-fraction 8 on hydrophobic and hydrophilic interfaces using atomic force microscopy. Langmuir 19, 4740–4744 (2003)

    Article  Google Scholar 

  150. Younes-Metzler, O., Ben, R.N., Giorgi, J.B.: Pattern formation of antifreeze glycoproteins via solvent evaporation. Langmuir 23, 11355–11359 (2007)

    Article  Google Scholar 

  151. Cui, Y., Turner, G., Roy, U.N., Guo, M., Pan, Z., Morgan, S., Burger, A., Yeh, Y.: Raman spectroscopy shows antifreeze glycoproteins interact with highly oriented pyrolytic graphite. J. Raman Spectrosc. 36, 1113–1117 (2005)

    Article  ADS  Google Scholar 

  152. Pan, Z., Morgan, S.H., Ueda, A., Mu, R., Cui, Y., Guo, M., Burger, A., Yeh, Y.: Surface-enhanced Raman probing of biomolecules using Ag-coated porous glass-ceramic substrates. J. Raman Spectrosc. 36, 1082–1087 (2005)

    Article  ADS  Google Scholar 

  153. Hederos, M., Konradsson, P., Borgh, A., Liedberg, B.: Mimicking the properties of antifreeze glycoproteins: synthesis and characterization of a model system for ice nucleation and antifreeze studies. J. Phys. Chem. B 109, 15849–15859 (2005)

    Article  Google Scholar 

  154. Garner, J., Harding, M.M.: Design and synthesis of alpha-helical peptides and mimetics. Org. Biomol. Chem. 5, 3577–3585 (2007)

    Article  Google Scholar 

  155. Wierzbicki, A., Knight, C.A., Rutland, T.J., Muccio, D.D., Pybus, B.S., Sikes, C.S.: Structure-function relationship in the antifreeze activity of synthetic alanine-lysine antifreeze polypeptides. Biomacromolecules 1, 268–274 (2000)

    Article  Google Scholar 

  156. Zwieg, T., Cucarella, V., Kauffeld, M.: Novel biomimetically based ice-nucleating coatings. Int. J. Mater. Res. 98, 597–602 (2007)

    Article  Google Scholar 

  157. Solga, A., Cerman, Z., Striffler, B.F., Spaeth, M., Barthlott, W.: The dream of staying clean: lotus and biomimetic surfaces. Bioinspir. Biomim. 2, 126–134 (2007)

    Article  ADS  Google Scholar 

  158. Grunwald, I., Rischka, K.: Prevention of ice adhesion and ice growth on surfaces: one problem, two prospective solutions. Annual report 2007/08, Fraunhofer IFAM, pp. 66–68 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Yang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Du, N., Toh, G.W., Liu, X.Y. (2012). Survival from the Cold Winter: Freezing and Ice Crystallization Inhibition by Antifreeze Proteins. In: Liu, X. (eds) Bioinspiration. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5372-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5372-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5303-1

  • Online ISBN: 978-1-4614-5372-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics