Skip to main content

Osteoclast Determinants and Implications for Therapy

  • Conference paper
  • First Online:
Osteoimmunology
  • 734 Accesses

Abstract

Osteoclasts are multinucleated cells which contribute to bone remodeling by the erosion of the mineralized matrix. They belong to the hematopoietic cell lineage, arising from the monocyte/macrophage precursor family. Polarization and adhesion to substrate are mandatory events for bone resorption, which occurs extracellularly in an area underneath the cell, denominated resorbing lacuna. This is an acidic microenvironment in which low pH allows at the same time the dissolution of the inorganic hydroxyapatite matrix and the activity of enzymes that degrade the organic components, especially collagen. Osteoclastogenesis is subjected to regulation by the RANKL/RANK axis, which links osteoclasts to the immune system. Both exacerbated and impaired osteoclast activity are deleterious for the skeleton, with consequent perturbations of bone remodeling. In both cases, therapy is not yet satisfactory and it is urgent to identify new and specific determinants that may contribute to understand the etiology of osteoclast disorders, and that could be targeted for therapy. Specificity of treatments is an issue because many cells share common determinants that are likely to cause adverse effects when disturbed. Intense osteoclast research is in progress and is expected to led shortly to new knowledge with high translational impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAII:

Carbonic anhydrase II

CLC7:

Chloride channel type 7

CtpK:

Cathepsin K gene

DC-STAMP:

Dendritic cell-specific transmembrane protein

ERK:

Extracellular signal-regulated kinase

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

M-CSF:

Macrophage colony-stimulating factor

MFR:

Macrophage fusion receptor

MITF:

Microphthalmia-associated transcription factor

MMPs:

Metalloproteinases

NEMO:

NF-κβ essential modulator

NF-kB:

Nuclear factor-kB

OSTM1:

Osteopetrosis associated transmembrane protein 1

PLEKHM1:

Pleckstrin homology domain containing, family M (with RUN domain) member 1

PRELP:

Proline/arginine-rich end leucine-rich repeat protein

RANK:

Receptor activator of NF-kappaB

RANKL:

Receptor activator of NF-kappaB ligand

RGD:

Amino acid sequence Arg-Gly-Asp

S1P:

Sphingosine-1-phosphate

SERM:

Selective estrogen receptor modulator

SIRP:

Signal-regulatory-protein

TCIRG1:

T-cell immune regulator 1

TFGβ:

Transforming growth factor β

TNFSF11:

Tumor necrosis factor ligand superfamily, member 11

TNFRSF11A:

Tumor necrosis factor receptor superfamily, member 11A

TRAcP:

Tartrate-resistant acid phosphatase

References

  1. Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170:427–435

    Article  PubMed  CAS  Google Scholar 

  2. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108

    Article  PubMed  CAS  Google Scholar 

  3. Nemeth K, Schoppet M, Al-Fakhri N, Helas S, Jessberger R, Hofbauer LC, Goettsch C (2011) The role of osteoclast-associated receptor in osteoimmunology. J Immunol 186:13–18

    Article  PubMed  CAS  Google Scholar 

  4. Stenbeck G (2002) Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 13:285–292

    Article  PubMed  CAS  Google Scholar 

  5. Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin-Zallone A (1984) Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 99:1696–1705

    Article  PubMed  CAS  Google Scholar 

  6. Nakamura I, Gailit J, Sasaki T (1996) Osteoclast integrin alphaVbeta3 is present in the clear zone and contributes to cellular polarization. Cell Tissue Res 286:507–515

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi N, Ejiri S, Yanagisawa S, Ozawa H (2007) Regulation of osteoclast polarization. Odontology 95:1–9

    Article  PubMed  CAS  Google Scholar 

  8. Coxon FP, Taylor A (2000) Vesicular trafficking in osteoclasts. Semin Cell Dev Biol 19:424–433

    Google Scholar 

  9. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  10. Väänänen K (2005) Mechanism of osteoclast mediated bone resorption – rationale for the design of new therapeutics. Adv Drug Deliv Rev 57:959–971

    Article  PubMed  Google Scholar 

  11. Del Fattore A, Cappariello A, Teti A (2008) Genetics, pathogenesis and complications of osteopetrosis. Bone 42:19–29

    Article  PubMed  Google Scholar 

  12. Suda T, Takahashi N, Martin TJ (1992) Modulation of osteoclast differentiation. Endocr Rev 13:66–68

    PubMed  CAS  Google Scholar 

  13. Zhao Q, Shao J, Chen W, Li YP (2007) Osteoclast differentiation and gene regulation. Front Biosci 12:2519–2529

    Article  PubMed  CAS  Google Scholar 

  14. Sakiyama H, Masuda R, Inoue N, Yamamoto K, Kuriiwa K, Nakagawa K, Yoshida K (2001) Establishment and characterization of macrophage-like cell lines expressing osteoclast-specific markers. J Bone Miner Metab 19:220–227

    Article  PubMed  CAS  Google Scholar 

  15. Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C (2009) Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 84:1–12

    Article  PubMed  CAS  Google Scholar 

  16. Vignery A (2009) Macrophage fusion: molecular mechanisms. Methods Mol Biol 475:149–161

    Article  Google Scholar 

  17. Aker M, Rouvinski A, Hashavia S, Ta-Shma A, Shaag A, Zenvirt S, Israel S, Weintraub M, Taraboulos A, Bar-Shavit Z, Elpeleg O (2012) An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet 49:221–226

    Article  PubMed  CAS  Google Scholar 

  18. Matsuo K (2009) Cross-talk among bone cells. Curr Opin Nephrol Hypertens 18:292–297

    Article  PubMed  CAS  Google Scholar 

  19. Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K (2007) Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res 22:487–494

    Article  PubMed  CAS  Google Scholar 

  20. Ryu J, Kim HJ, Chang EJ, Huang H, Banno Y, Kim HH (2006) Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J 25:5840–5851

    Article  PubMed  CAS  Google Scholar 

  21. Del Fattore A, Fornari R, Van Wesenbeeck L, de Freitas F, Timmermans JP, Peruzzi B, Cappariello A, Rucci N, Spera G, Helfrich MH, Van Hul W, Migliaccio S, Teti A (2008) A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res 23:380–391

    Article  PubMed  Google Scholar 

  22. Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4:111–121

    Article  PubMed  CAS  Google Scholar 

  23. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    Article  PubMed  CAS  Google Scholar 

  24. Reginster JY (2011) Antifracture efficacy of currently available therapies for postmenopausal osteoporosis. Drugs 71:65–78

    Article  PubMed  CAS  Google Scholar 

  25. Papapoulos SE (2011) Use of bisphosphonates in the management of postmenopausal ­osteoporosis. Ann N Y Acad Sci 1218:15–32

    Article  PubMed  CAS  Google Scholar 

  26. Diel IJ, Bergner R, Grotz KA (2007) Adverse effects of bisphosphonates: current issues. J Support Oncol 5:475–482

    PubMed  CAS  Google Scholar 

  27. Abrahamsen B (2010) Adverse effects of bisphosphonates. Calcif Tissue Int 86:421–435

    Article  PubMed  CAS  Google Scholar 

  28. Marie PJ (2006) Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone 38:S10–S14

    Article  PubMed  CAS  Google Scholar 

  29. Caudrillier A, Hurtel-Lemaire AS, Wattel A, Cournarie F, Godin C, Petit L, Petit JP, Terwilliger E, Kamel S, Brown EM, Mentaverri R, Brazier M (2010) Strontium ranelate decreases ­receptor activator of nuclear factor-KappaB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol 78:569–576

    Article  PubMed  CAS  Google Scholar 

  30. Doren M, Samsioe G (2000) Prevention of postmenopausal osteoporosis with oestrogen replacement therapy and associated compounds: update on clinical trials since 1995. Hum Reprod Update 6:419–426

    Article  PubMed  CAS  Google Scholar 

  31. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106:1229–1237

    Article  PubMed  CAS  Google Scholar 

  32. Manolagas SC, Kousteni S, Jilka RL (2002) Sex steroids and bone. Recent Prog Horm Res 57:385–409

    Article  PubMed  CAS  Google Scholar 

  33. Persson I, Weiderpass E, Bergkvist L, Bergstrom R, Schairer C (1999) Risks of breast and endometrial cancer after estrogen and estrogen-progestin replacement. Cancer Causes Control 10:253–260

    Article  PubMed  CAS  Google Scholar 

  34. Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators - mechanisms of action and application to clinical practice. N Engl J Med 348:618–629

    Article  PubMed  CAS  Google Scholar 

  35. Archer DF (2010) Tissue-selective estrogen complexes: a promising option for the comprehensive management of menopausal symptoms. Drugs Aging 27:533–544

    Article  PubMed  CAS  Google Scholar 

  36. Charopoulos I, Orme S, Giannoudis PV (2011) The role and efficacy of denosumab in the treatment of osteoporosis: an update. Expert Opin Drug Saf 10(2):205–217

    Article  PubMed  CAS  Google Scholar 

  37. Moen MD, Keam SJ (2011) Denosumab: a review of its use in the treatment of postmenopausal osteoporosis. Drugs Aging 28:63–82

    Article  PubMed  CAS  Google Scholar 

  38. Gowen M (1997) Inhibition of cathepsin K – a novel approach to antiresorptive therapy. Expert Opin Investig Drugs 6:1199–1202

    Article  PubMed  CAS  Google Scholar 

  39. Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, Hustad CM, DaSilva C, Santora AC, Ince BA (2010) Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res 25:937–947

    PubMed  Google Scholar 

  40. Lewiecki EM (2009) Odanacatib, a cathepsin K inhibitor for the treatment of osteoporosis and other skeletal disorders associated with excessive bone remodeling. Drugs 12:799–809

    CAS  Google Scholar 

  41. Eisman JA, Bone HG, Hosking DJ, McClung MR, Reid IR, Rizzoli R, Resch H, Verbruggen N, Hustad CM, Dasilva C, Petrovic R, Santora AC, Ince BA, Lombardi A (2011) Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res 26:242–251

    Article  PubMed  CAS  Google Scholar 

  42. Rucci N, Rufo A, Alamanou M, Capulli M, Del Fattore A, Ahrman E, Capece D, Iansante V, Zazzeroni F, Alesse E, Heinegard D, Teti A (2009) The glycosaminoglycan-binding domain of PRELP acts as a cell type-specific NF-kappaB inhibitor that impairs osteoclastogenesis. J Cell Biol 187:669–683

    Article  PubMed  CAS  Google Scholar 

  43. Bengtsson E, Aspberg A, Heinegard D, Sommarin Y, Spillmann D (2000) The amino-terminal part of PRELP binds to heparin and heparan sulfate. J Biol Chem 275:40695–40702

    Article  PubMed  CAS  Google Scholar 

  44. Bengtsson E, Morgelin M, Sasaki T, Timpl R, Heinegard D, Aspberg A (2002) The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J Biol Chem 277:15061–15068

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The original work was supported by grants from the EC (OSTEOGENE, contract No. LSHM-CT-2003-502941), the Italian Association for Cancer Research and the Swiss Bridge Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Teti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this paper

Cite this paper

Teti, A. (2013). Osteoclast Determinants and Implications for Therapy. In: Choi, Y. (eds) Osteoimmunology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5366-6_14

Download citation

Publish with us

Policies and ethics