Skip to main content

Hyperbolic Wavelets and Multiresolution in the Hardy Space of the Upper Half Plane

  • Chapter
Blaschke Products and Their Applications

Part of the book series: Fields Institute Communications ((FIC,volume 65))

Abstract

A multiresolution analysis in the Hardy space of the unit disc was introduced recently (see Pap in J. Fourier Anal. Appl. 17(5):755–776, 2011). In this paper we will introduce an analogous construction in the Hardy space of the upper half plane. The levels of the multiresolution are generated by localized Cauchy kernels on a special hyperbolic lattice in the upper half plane. This multiresolution has the following new aspects: the lattice which generates the multiresolution is connected to the Blaschke group, the Cayley transform and the hyperbolic metric. The second: the nth level of the multiresolution has finite dimension (in classical affine multiresolution this is not the case) and still we have the density property, i.e. the closure in norm of the reunion of the multiresolution levels is equal to the Hardy space of the upper half plane. The projection operator to the nth resolution level is a rational interpolation operator on a finite subset of the lattice points. If we can measure the values of the function on the points of the lattice the discrete wavelet coefficients can be computed exactly. This makes our multiresolution approximation very useful from the point of view of the computational aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akay, H., Ninnes, B.: Orthonormal basis functions for continuous-time systems and L p convergence. Math. Control Signals Syst. 12, 295–305 (1999)

    Article  Google Scholar 

  2. Bokor, J., Athans, M.: Frequency domain identification of the MIT interferometer tested in generalized orthogonal basis. In: Proceedings of the 11th IFAC Symposium on System Identification, Kiayushu, Japan, vol. 4, pp. 1735–1739 (1997)

    Google Scholar 

  3. Bokor, J., Schipp, F., Szabó, Z.: Identification of rational approximate models in H using generalized orthonormal basis. IEEE Trans. Autom. Control 44(1), 153–158 (1999)

    Article  MATH  Google Scholar 

  4. Bultheel, A., González-Vera, P.: Wavelets by orthogonal rational kernels. Contemp. Math. 236, 101–126 (1999)

    Article  Google Scholar 

  5. Bultheel, A., González-Vera, P., Hendriksen, E., Njastad, O.: Orthogonal Rational Functions. Cambridge Monographs on Applied and Computational Mathematics, vol. 5. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  6. Cima, J., Ross, W.: The Backward Shift on the Hardy Space. Mathematical Surveys and Monographs, vol. 79. Am. Math. Soc., Providence (2000). pp. xii+199. MR1761913

    MATH  Google Scholar 

  7. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dzrbasjan, M.M.: Biorthogonal systems of rational functions and best approximant of the Cauchy kernel on the real axis. Math. USSR Sb. 24(3), 409–433 (1974)

    Article  Google Scholar 

  9. Evangelista, G., Cavaliere, S.: Discrete frequency-warped wavelets: theory and applications. IEEE Trans. Signal Process. 46(4), 874–883 (1998)

    Article  MathSciNet  Google Scholar 

  10. Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic decompositions trough integrable group representations. In: Cwinkel, M., et al. (eds.) Functions Spaces and Applications. Lecture Notes in Math., vol. 1302, pp. 307–340. Springer, Berlin (1989)

    Google Scholar 

  11. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decomposition I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goupilland, P., Grossman, A., Morlet, J.: Cycle-octave and related transforms in seismetic signal analysis. Geoexploration 25, 85–102 (1984)

    Article  Google Scholar 

  13. Heil, C.E., Walnut, D.F.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Hoog, T.J.: Rational Orthonormal Basis and Related Transforms in Linear System Modeling. Ponsen and Looijn, Wageningen (2001)

    Google Scholar 

  15. Mallat, S.: Theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Math. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  16. Mashreghi, J.: Representation Theorems in Hardy Spaces. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  17. Pap, M.: Hyperbolic wavelets and multiresolution in \(H^{2}(\mathbb{T})\). J. Fourier Anal. Appl. 17(5), 755–776 (2011). doi:10.1007/s00041-011-9169-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Pap, M., Schipp, F.: The voice transform on the Blaschke group I. PU.M.A. 17(3–4), 387–395 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Pap, M., Schipp, F.: The voice transform on the Blaschke group II. Ann. Univ. Sci. (Budapest), Sect. Comput. 29, 157–173 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Partington, J.: Interpolation, Identification and Sampling. London Mathematical Society Monographs, vol. 17. Oxford University Press, London (1997)

    MATH  Google Scholar 

  21. Qian, T.: Intrinsic mono-component decomposition of functions: an advance of Fourier theory. Math. Methods Appl. Sci. (2009). doi:10.1002/mma.1214. www.interscience.wiley.com.

  22. Soumelidis, A., Bokor, J., Schipp, F.: Signal and system representations on hyperbolic groups: beyond rational orthogonal bases. In: ICC 2009 7th IEEE International Conference on Computational Cybernetics, Palma de Mallorca. ISBN: 978-1-4244-5311-5

    Google Scholar 

  23. Soumelidis, A., Bokor, J., Schipp, F.: Detection of changes on signals and systems based upon representations in orthogonal rational bases. In: Proc. of 5th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, SAFEPROSS 2003, Washington D.C., USA (June 2003), on CD

    Google Scholar 

  24. Soumelidis, A., Bokor, J., Schipp, F.: Representation and approximation of signals and systems using generalized Kautz functions. In: Proc. of the 36th Conference on Decisions and Control, San Diego, CA, pp. 3793–3796 (1997), CDC’97

    Chapter  Google Scholar 

  25. Soumelidis, A., Bokor, J., Schipp, F.: Frequency domain representation of signals in rational orthogonal bases. In: Proc. of the 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal (2002), on CD. Med’(2002)

    Google Scholar 

  26. Soumelidis, A., Pap, M., Schipp, F., Bokor, J.: Frequency domain identification of partial fraction models. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, June, pp. 1–6 (2002)

    Google Scholar 

  27. Szabó, Z.: Interpolation and quadrature formula for rational systems on the unit circle. Ann. Univ. Sci. (Budapest), Sect. Comput. 21, 41–56 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Ward, N.F.D., Partington, J.R.: Robust identification in the disc algebra using rational wavelets and orthonormal basis functions. Int. J. Control 64, 409–423 (1996)

    Article  MATH  Google Scholar 

  29. Ward, N.F.D., Partington, J.R.: A construction of rational wavelets and frames in Hardy-Sobolev spaces with applications to system modeling. SIAM J. Control Optim. 36(2), 654–679 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This chapter was developed during a fruitful stay of the second author at NuHAG group at the University of Vienna as Marie Curie fellow FP7-People-IEF-2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit Pap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feichtinger, H.G., Pap, M. (2013). Hyperbolic Wavelets and Multiresolution in the Hardy Space of the Upper Half Plane. In: Mashreghi, J., Fricain, E. (eds) Blaschke Products and Their Applications. Fields Institute Communications, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5341-3_11

Download citation

Publish with us

Policies and ethics