Skip to main content

Overview on Treatment of Prion Diseases and Decontamination of Prions

  • Chapter
  • First Online:
Prions and Diseases
  • 1530 Accesses

Abstract

Currently, there are no prophylactic or disease-modifying therapies for prion diseases with proven, significant efficacy. The discovery of treatments by design is hampered by incomplete understanding of prion disease pathogenesis. However, therapeutic considerations have broadly centered on a loss of function of the normal prion protein or possible toxicity of abnormal prion proteins. Potential treatments have been assessed by in vitro cell-free studies, cell-culture studies, in vivo animal experiments, and in human clinical trials. The last of these poses several problems including the rarity of prion diseases, variations in the rates of clinical progression, difficulties in measuring this clinical progress, and in the difficulty of early diagnosis at a time before significant neurological damage has already occurred. Given the transmissibility of prion diseases, one aspect of their prevention involves decontamination of potentially contaminated medical instruments. Unfortunately, prion infectivity is particularly difficult to remove or inactivate, with variations between different prion agent strains and methodological problems in the assessment of the effectiveness of any proposed method. The general principles underpinning prion disease treatment and decontamination are reviewed with reference to past research and current knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atarashi R et al (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 17(2):175–178

    Article  PubMed  CAS  Google Scholar 

  • Baxter HC et al (2005) Elimination of transmissible spongiform encephalopathy infectivity and decontamination of surgical instruments by using radio-frequency gas-plasma treatment. J Gen Virol 86:2393–2399

    Article  PubMed  CAS  Google Scholar 

  • Baxter RL et al (2006) Quantitative analysis of residual protein contamination on reprocessed surgical instruments. J Hosp Infect 63:439–444

    Article  PubMed  CAS  Google Scholar 

  • Bone I et al (2008) Intraventricular pentosan polysulphate in human prion disease: an observational study in the UK. Eur J Neurol 15:458–464

    Article  PubMed  CAS  Google Scholar 

  • Brown P et al (2000) New studies on the heat resistance of hamster-adapted scrapie agent: threshold survival after ashing at 600 degrees C suggests an inorganic template of replication. Proc Natl Acad Sci USA 97:3418–3421

    PubMed  CAS  Google Scholar 

  • Collinge J et al (2009) Safety and efficacy of quinacrine in human prion disease (PRION-1 study): a patient-preference trial. Lancet 8:334–344

    Article  CAS  Google Scholar 

  • Collins S et al (2002) Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Ann Neurol 52:503–506

    Article  PubMed  CAS  Google Scholar 

  • de Marco MF et al (2010) Large-scale immunohistochemical examination for lymphoreticular prion protein in tonsil specimens collected in Britain. J Pathol 222:380–387

    Article  PubMed  Google Scholar 

  • Doh-Ura K et al (2004) Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J Virol 78:4999–5006

    Article  PubMed  CAS  Google Scholar 

  • Edgeworth JA et al (2009) Highly sensitive, quantitative cell-based assay for prions adsorbed to solid surfaces. Proc Natl Acad Sci 106:3479–3483

    Article  PubMed  CAS  Google Scholar 

  • Edgeworth JA et al (2011a) A Standardized comparison of commercially available prion decontamination reagents using the Standard Steel-Binding Assay. J Gen Virol 92:718–726

    Article  PubMed  CAS  Google Scholar 

  • Edgeworth JA et al (2011b) Detection of prion infection in variant Creutzfeldt-Jakob disease: a blood-based assay. Lancet 377(9764):487–493

    Article  PubMed  CAS  Google Scholar 

  • Hilton DA et al (2004) Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol 203:733–739

    Article  PubMed  CAS  Google Scholar 

  • Honda H et al. (2012) Protease-resistant PrP and PrP oligomers in the brain in human prion diseases after intraventricular pentosan polysulfate infusion. Neuropathology 32(2):124–132

    Google Scholar 

  • Howlin RP et al (2010) Application of a fluorescent dual stain to assess decontamination of tissue protein and prion amyloid from surgical stainless steel during simulated washer-disinfector cycles. J Hosp Infect 75:66–71

    Article  PubMed  CAS  Google Scholar 

  • http://www.dh.gov.uk/ab/ACDP/TSEguidance/index.htm

  • http://www.who.int/csr/resources/publications/bse/whocdscsraph2003.pdf

  • Jackson GS, McKintosh E, Flechsig E, Prodromidou K, Hirsch P, Linehan J, Brandner S, Clarke ART, Weissmann C, Collinge J (2005) An enzyme-detergent method for effective prion decontamination of surgical steel. J Gen Virol 86:869–878

    Article  PubMed  CAS  Google Scholar 

  • Kocisko DA, Caughey B (2006) Searching for anti-prion compounds: cell-based high-throughput in vitro and animal testing strategies. Methods Enzymol 412:223–234

    Article  PubMed  CAS  Google Scholar 

  • Korth C, May BC, Cohen FE, Prusiner SB (2001) Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci USA 98:9836–9841

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb IP et al (2006) Are stainless steel wires used for intracranial implantation of PrPSc a good model of iatrogenic transmission from contaminated surgical stainless steel instruments after cleaning? J Hosp Infect 64:339–343

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb IP, Pinchin H, Collin R, Keevil CW (2007) Effect of drying time, ambient temperature and pre-soaks on prion-infected tissue contamination levels on surgical stainless steel: concerns over prolonged transportation of instruments from theatre to central sterile service departments. J Hosp Infect 65:72–77

    Article  PubMed  CAS  Google Scholar 

  • Maheshwar A, De M, Browning ST (2003) Reusable versus disposable instruments in tonsillectomy: a comparative study of outcomes. Int J Clin Pract 57:579–583

    PubMed  CAS  Google Scholar 

  • Mallucci GR et al (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21:202–210

    Article  PubMed  CAS  Google Scholar 

  • Mallucci G et al (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:763–765

    Article  Google Scholar 

  • McDonnell G, Burke P (2003) The challenge of prion decontamination. Clin Infect Dis 36:1152–1154

    Article  PubMed  Google Scholar 

  • McGuire L et al (2012) Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt–Jakob disease. Ann Neurol 72:278–285

    Article  PubMed  Google Scholar 

  • Mead S et al (2011) PRION-1 scales analysis supports use of functional outcome measures in prion disease. Neurology 77:1674–1683

    Article  PubMed  CAS  Google Scholar 

  • Murdoch H et al (2006) Surface decontamination of surgical instruments: an ongoing dilemma. J Hosp Infect 63:432–438

    Article  PubMed  CAS  Google Scholar 

  • Nix P (2003) Prions and disposable surgical instruments. Int J Clin Pract 57:678–680

    PubMed  CAS  Google Scholar 

  • Otto M et al (2004) Efficacy of flupirtine on cognitive function in patients withy CJD: a double-blind study. Neurology 62:714–718

    Article  PubMed  CAS  Google Scholar 

  • Rogez-Kreuz C et al (2009) Inactivation of animal and human prions by hydrogen peroxide gas plasma sterilization. Infect Contr Hosp Epidemiol 30:769–777

    Article  CAS  Google Scholar 

  • Secker TJ, Hervé R, Keevil CW (2011) Adsorption of prion and tissue proteins to surgical stainless steel surfaces and the efficacy of decontamination following dry and wet storage. J Hosp Infect 78:251–255

    Article  PubMed  CAS  Google Scholar 

  • Somerville RA et al (2002) Characterization of thermodynamic diversity between transmissible spongiform encephalopathy agent strains and its theoretical implications. J Biol Chem 277:11084–11089

    Article  PubMed  CAS  Google Scholar 

  • Spencer MD, Richard SG K, Will RG (2002) First hundred cases of variant Creutzfeldt-Jakob disease: retrospective case note of early psychiatric and neurological features. Br Med J 342:1479–1482

    Article  Google Scholar 

  • Stewart L, Rydzewska L, Keogh G, Knight R (2008) A systematic review of clinical studies of therapeutic interventions for human prion disease. Neurology 70:1272–1281

    Article  PubMed  Google Scholar 

  • Sutton JM, Dickinson J, Walker JT, Raven NDH (2006) Methods to minimize the risks of Creutzfeldt-Jakob disease transmission by surgical procedures: where to set the standard? Healthcare Epidemiol 43:757–764

    Google Scholar 

  • Taylor DM et al (2002) Thermostability of mouse-passaged BSE and scrapie is independent of host PrP genotype: implications for the nature of the causal agents. J Gen Virol 83:3199–3204

    PubMed  CAS  Google Scholar 

  • Trevitt C, Collinge J (2006) A systematic review of prion therapeutics in experimental models. Brain 129:2241–2265

    Article  PubMed  Google Scholar 

  • Tsuboi Y et al (2009) Continuous intraventricular infusion of pentosan polysulfate: clinical trial against prion diseases. Neuropathology 29:632–636

    Article  PubMed  Google Scholar 

  • Weissmann C, Aguzzi A (2005) Approaches to therapy of prion diseases. Annu Rev Med 56:321–344

    Article  PubMed  CAS  Google Scholar 

  • Zanusso G, Monaco S (2005) Molecular mechanisms of human prion diseases. Drug Discov Today Dis Mech 2:511–518

    Article  CAS  Google Scholar 

  • Zobeley E, Fleschig E, Cozzio A, Enari M, Weissmann C (1999) Infectivity of scrapie prions bound to a stainless steel surface. Mol Med 5:240–243

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Knight FRCP (E) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knight, R. (2013). Overview on Treatment of Prion Diseases and Decontamination of Prions. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5338-3_16

Download citation

Publish with us

Policies and ethics