Skip to main content

Streptococcus pneumoniae: The Prototype of Lung Responses in Pneumonia

  • Chapter
  • First Online:
Mucosal Immunology of Acute Bacterial Pneumonia

Abstract

Streptococcus pneumoniae causes infections as diverse as meningitis, sepsis, and otitis media, but its species name “pneumoniae” refers to its dominant role in pneumonia. Pneumonia is broadly divided into three classes: community-acquired, hospital-acquired, and pneumonia in an immunocompromised host (Reynolds et al. 2010; Watson et al. 1993). Since its initial identification by Louis Pasteur and George Sternberg over 130 years ago, S. pneumoniae remains the leading causative agent of community-acquired pneumonia worldwide (Watson et al. 1993). Host immune responses must contend with over 90 pneumococcal capsular serotypes. Children <2 years old who lack the ability to mount effective immunoglobulin responses to capsular antigens are the most susceptible to invasive pneumococcal disease (Reynolds et al. 2010). Lobar pneumonia, a classic description in clinical medicine, presents with five cardinal signs: sudden onset chest pain, a shaking chill, cough, fever, and production of blood tinged sputum (Heffron 1939). In pediatric patients, presenting symptoms include fever, cough, labored breathing with grunting, and cyanosis (Tan et al. 1998). In adults, community-acquired pneumococcal pneumonia often presents with opacity in a lobar pattern on chest radiographs (Reynolds et al. 2010). In both children (Don et al. 2010) and adults (Cilloniz et al. 2011), most cases of pneumococcal pneumonia resolve after treatment with a 5 % mortality rate. However, complications such as pleural effusion, empyema, and multi-lobar consolidation can arise (Cilloniz et al. 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K, Katsuragi H et al (2007) Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol 9(3):633–644

    Article  PubMed  CAS  Google Scholar 

  • Armstrong L, Medford AR, Uppington KM, Robertson J, Witherden IR, Tetley TD et al (2004) Expression of functional toll-like receptor-2 and −4 on alveolar epithelial cells. Am J Respir Cell Mol Biol 31(2):241–245

    Article  PubMed  CAS  Google Scholar 

  • Arredouani M, Yang Z, Ning Y, Qin G, Soininen R, Tryggvason K et al (2004) The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200(2):267–272

    Article  PubMed  CAS  Google Scholar 

  • Arredouani MS, Yang Z, Imrich A, Ning Y, Qin G, Kobzik L (2006) The macrophage scavenger receptor SR-AI/II and lung defense against pneumococci and particles. Am J Respir Cell Mol Biol 35(4):474–478

    Article  PubMed  CAS  Google Scholar 

  • Balamayooran G, Batra S, Fessler MB, Happel KI, Jeyaseelan S (2010a) Mechanisms of neutrophil accumulation in the lungs against bacteria. Am J Respir Cell Mol Biol 43(1):5–16

    Article  PubMed  CAS  Google Scholar 

  • Balamayooran T, Balamayooran G, Jeyaseelan S (2010b) Review: toll-like receptors and NOD-like receptors in pulmonary antibacterial immunity. Innate Immun 16(3):201–210

    Article  PubMed  CAS  Google Scholar 

  • Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A et al (2006) A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA 103(8): 2857–2862

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Fenton MJ (2004) Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 286(5):L887–L892

    Article  PubMed  CAS  Google Scholar 

  • Beisswenger C, Coyne CB, Shchepetov M, Weiser JN (2007) Role of p38 MAP kinase and transforming growth factor-beta signaling in transepithelial migration of invasive bacterial pathogens. J Biol Chem 282(39):28700–28708

    Article  PubMed  CAS  Google Scholar 

  • Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16(4):401–407

    Article  PubMed  CAS  Google Scholar 

  • Beiter K, Wartha F, Hurwitz R, Normark S, Zychlinsky A, Henriques-Normark B (2008) The capsule sensitizes Streptococcus pneumoniae to alpha-defensins human neutrophil proteins 1 to 3. Infect Immun 76(8):3710–3716

    Article  PubMed  CAS  Google Scholar 

  • Bergeron Y, Ouellet N, Deslauriers AM, Simard M, Olivier M, Bergeron MG (1998) Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice. Infect Immun 66(3):912–922

    PubMed  CAS  Google Scholar 

  • Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW (1999) The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J Exp Med 190(4):585–590

    Article  PubMed  CAS  Google Scholar 

  • Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P et al (2004) Role of toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun 72(2):788–794

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  PubMed  CAS  Google Scholar 

  • Cabellos C, MacIntyre DE, Forrest M, Burroughs M, Prasad S, Tuomanen E (1992) Differing roles for platelet-activating factor during inflammation of the lung and subarachnoid space. The special case of Streptococcus pneumoniae. J Clin Invest 90(2):612–618

    Article  PubMed  CAS  Google Scholar 

  • Camara M, Boulnois GJ, Andrew PW, Mitchell TJ (1994) A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect Immun 62(9):3688–3695

    PubMed  CAS  Google Scholar 

  • Chaqour B, Howard PS, Richards CF, Macarak EJ (1999) Mechanical stretch induces platelet-activating factor receptor gene expression through the NF-kappaB transcription factor. J Mol Cell Cardiol 31(7):1345–1355

    Article  PubMed  CAS  Google Scholar 

  • Cilloniz C, Ewig S, Polverino E, Munoz-Almagro C, Marco F, Gabarrus A, et al. Pulmonary complications of pneumococcal community-acquired pneumonia: incidence, predictors, and outcomes. Clin Microbiol Infect. 2011

    Google Scholar 

  • Claus DR, Siegel J, Petras K, Osmand AP, Gewurz H (1977) Interactions of C-reactive protein with the first component of human complement. J Immunol 119(1):187–192

    PubMed  CAS  Google Scholar 

  • Cockeran R, Anderson R, Feldman C (2002) The role of pneumolysin in the pathogenesis of Streptococcus pneumoniae infection. Curr Opin Infect Dis 15(3):235–239

    Article  PubMed  CAS  Google Scholar 

  • Colino J, Snapper CM (2003) Two distinct mechanisms for induction of dendritic cell apoptosis in response to intact Streptococcus pneumoniae. J Immunol 171(5):2354–2365

    PubMed  CAS  Google Scholar 

  • Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377(6548):435–438

    Article  PubMed  CAS  Google Scholar 

  • Dallaire F, Ouellet N, Bergeron Y, Turmel V, Gauthier MC, Simard M et al (2001) Microbiological and inflammatory factors associated with the development of pneumococcal pneumonia. J Infect Dis 184(3):292–300

    Article  PubMed  CAS  Google Scholar 

  • Dessing MC, Schouten M, Draing C, Levi M, von Aulock S, van der Poll T (2008) Role played by Toll-like receptors 2 and 4 in lipoteichoic acid-induced lung inflammation and coagulation. J Infect Dis 197(2):245–252

    Article  PubMed  CAS  Google Scholar 

  • Dessing MC, Hirst RA, de Vos AF, van der Poll T (2009) Role of toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice. PLoS One 4(11):e7993

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J, Salman M, Rottem S (1995) An unusual polar lipid from the cell membrane of Mycoplasma fermentans. Eur J Biochem 227(3):897–902

    Article  PubMed  CAS  Google Scholar 

  • Devaraj S, Du Clos TW, Jialal I (2005) Binding and internalization of C-reactive protein by Fcgamma receptors on human aortic endothelial cells mediates biological effects. Arterioscler Thromb Vasc Biol 25(7):1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Dockrell DH, Lee M, Lynch DH, Read RC (2001) Immune-mediated phagocytosis and killing of Streptococcus pneumoniae are associated with direct and bystander macrophage apoptosis. J Infect Dis 184(6):713–722

    Article  PubMed  CAS  Google Scholar 

  • Dockrell DH, Marriott HM, Prince LR, Ridger VC, Ince PG, Hellewell PG et al (2003) Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J Immunol 171(10):5380–5388

    PubMed  CAS  Google Scholar 

  • Don M, Canciani M, Korppi M (2010) Community-acquired pneumonia in children: what’s old? what’s new? Acta Paediatr 99(11):1602–1608

    Article  PubMed  Google Scholar 

  • Feldman C, Anderson R, Cockeran R, Mitchell T, Cole P, Wilson R (2002) The effects of pneumolysin and hydrogen peroxide, alone and in combination, on human ciliated epithelium in vitro. Respir Med 96(8):580–585

    Article  PubMed  CAS  Google Scholar 

  • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241

    Article  PubMed  CAS  Google Scholar 

  • Garrison SP, Thornton JA, Hacker H, Webby R, Rehg JE, Parganas E et al (2010) The p53-target gene puma drives neutrophil-mediated protection against lethal bacterial sepsis. PLoS Pathog 6(12):e1001240

    Article  PubMed  CAS  Google Scholar 

  • Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872

    Article  PubMed  CAS  Google Scholar 

  • Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88(4):553–560

    Article  PubMed  CAS  Google Scholar 

  • Gould JM, Weiser JN (2001) Expression of C-reactive protein in the human respiratory tract. Infect Immun 69(3):1747–1754

    Article  PubMed  CAS  Google Scholar 

  • Gould JM, Weiser JN (2002) The inhibitory effect of C-reactive protein on bacterial phosphorylcholine platelet-activating factor receptor-mediated adherence is blocked by surfactant. J Infect Dis 186(3):361–371

    Article  PubMed  CAS  Google Scholar 

  • Gribar SC, Richardson WM, Sodhi CP, Hackam DJ (2008) No longer an innocent bystander: epithelial toll-like receptor signaling in the development of mucosal inflammation. Mol Med 14(9–10):645–659

    PubMed  CAS  Google Scholar 

  • Haagsman HP, Hawgood S, Sargeant T, Buckley D, White RT, Drickamer K et al (1987) The major lung surfactant protein, SP 28–36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem 262(29):13877–13880

    PubMed  CAS  Google Scholar 

  • Hagimoto N, Kuwano K, Miyazaki H, Kunitake R, Fujita M, Kawasaki M et al (1997) Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol 17(3):272–278

    PubMed  CAS  Google Scholar 

  • Hamburger M, Robertson OH (1940) Studies on the pathogenesis of experimental pneumococcus pneumonia in the dog: I. Secondary pulmonary lesions. Relationship of bronchial obstruction and distribution of Pneumococci to their inception. J Exp Med 72(3):261–274

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt S, Talay SR, Brandtzaeg P, Chhatwal GS (1997) SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 25(6):1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt S, Bethe G, Remane PH, Chhatwal GS (1999) Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect Immun 67(4):1683–1687

    PubMed  CAS  Google Scholar 

  • Harder J, Siebert R, Zhang Y, Matthiesen P, Christophers E, Schlegelberger B et al (1997) Mapping of the gene encoding human beta-defensin-2 (DEFB2) to chromosome region 8p22-p23.1. Genomics 46(3):472–475

    Article  PubMed  CAS  Google Scholar 

  • Hedlund J, Sorberg M, Henriques Normark B, Kronvall G (2003) Capsular types and antibiotic susceptibility of invasive Streptococcus pneumoniae among children in Sweden. Scand J Infect Dis 35(8):452–458

    Article  PubMed  CAS  Google Scholar 

  • Heffron R (1939) Pneumonia. Commonwealth Fund, New York

    Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745

    Article  PubMed  CAS  Google Scholar 

  • Herbold W, Maus R, Hahn I, Ding N, Srivastava M, Christman JW et al (2010) Importance of CXC chemokine receptor 2 in alveolar neutrophil and exudate macrophage recruitment in response to pneumococcal lung infection. Infect Immun 78(6):2620–2630

    Article  PubMed  CAS  Google Scholar 

  • Hippenstiel S, Opitz B, Schmeck B, Suttorp N (2006) Lung epithelium as a sentinel and effector system in pneumonia–molecular mechanisms of pathogen recognition and signal transduction. Respir Res 7:97

    Article  PubMed  CAS  Google Scholar 

  • Hirst RA, Kadioglu A, O’Callaghan C, Andrew PW (2004) The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin Exp Immunol 138(2):195–201

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka S, Yamaya M, Suzuki T, Nakayama K, Kamanaka M, Ida S et al (2001) Acid exposure stimulates the adherence of Streptococcus pneumoniae to cultured human airway epithelial cells: effects on platelet-activating factor receptor expression. Am J Respir Cell Mol Biol 24(4):459–468

    PubMed  CAS  Google Scholar 

  • Jounblat R, Kadioglu A, Iannelli F, Pozzi G, Eggleton P, Andrew PW (2004) Binding and agglutination of Streptococcus pneumoniae by human surfactant protein D (SP-D) vary between strains, but SP-D fails to enhance killing by neutrophils. Infect Immun 72(2):709–716

    Article  PubMed  CAS  Google Scholar 

  • Jounblat R, Clark H, Eggleton P, Hawgood S, Andrew PW, Kadioglu A (2005) The role of surfactant protein D in the colonisation of the respiratory tract and onset of bacteraemia during pneumococcal pneumonia. Respir Res 6:126

    Article  PubMed  CAS  Google Scholar 

  • Kadioglu A, Andrew PW (2004) The innate immune response to pneumococcal lung infection: the untold story. Trends Immunol 25(3):143–149

    Article  PubMed  CAS  Google Scholar 

  • Kadioglu A, Coward W, Colston MJ, Hewitt CR, Andrew PW (2004) CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun 72(5):2689–2697

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MH, Volanakis JE (1974) Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J Immunol 112(6):2135–2147

    PubMed  CAS  Google Scholar 

  • Karlstrom A, Heston SM, Boyd KL, Tuomanen EI, McCullers JA (2011) Toll-like receptor 2 mediates fatal immunopathology in mice during treatment of secondary pneumococcal pneumonia following influenza. J Infect Dis 204(9):1358–1366

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13(5):816–825

    Article  PubMed  CAS  Google Scholar 

  • Kemp K, Bruunsgaard H, Skinhoj P, Klarlund Pedersen B (2002) Pneumococcal infections in humans are associated with increased apoptosis and trafficking of type 1 cytokine-producing T cells. Infect Immun 70(9):5019–5025

    Article  PubMed  CAS  Google Scholar 

  • King SJ (2010) Pneumococcal modification of host sugars: a major contributor to colonization of the human airway? Mol Oral Microbiol 25(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • King SJ, Hippe KR, Gould JM, Bae D, Peterson S, Cline RT et al (2004) Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol Microbiol 54(1):159–171

    Article  PubMed  CAS  Google Scholar 

  • Kirby AC, Newton DJ, Carding SR, Kaye PM (2007a) Evidence for the involvement of lung-specific gammadelta T cell subsets in local responses to Streptococcus pneumoniae infection. Eur J Immunol 37(12):3404–3413

    Article  PubMed  CAS  Google Scholar 

  • Kirby AC, Newton DJ, Carding SR, Kaye PM (2007b) Pulmonary dendritic cells and alveolar macrophages are regulated by gammadelta T cells during the resolution of S. pneumoniae-induced inflammation. J Pathol 212(1):29–37

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, von Aulock S, Leendertse M, Haslinger I, Draing C, Golenbock DT et al (2008) Lipoteichoic acid-induced lung inflammation depends on TLR2 and the concerted action of TLR4 and the platelet-activating factor receptor. J Immunol 180(5):3478–3484

    PubMed  CAS  Google Scholar 

  • Kremlev SG, Phelps DS (1994) Surfactant protein A stimulation of inflammatory cytokine and immunoglobulin production. Am J Physiol 267(6 Pt 1):L712–L719

    PubMed  CAS  Google Scholar 

  • Krivan HC, Roberts DD, Ginsburg V (1988) Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc Natl Acad Sci U S A 85(16):6157–6161

    Article  PubMed  CAS  Google Scholar 

  • Kuronuma K, Sano H, Kato K, Kudo K, Hyakushima N, Yokota S et al (2004) Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J Biol Chem 279(20):21421–21430

    Article  PubMed  CAS  Google Scholar 

  • Laennec R (1932) A treatise on the diseases of the chest and on mediate auscultation. SS & Wm Wood, New York

    Google Scholar 

  • Le Gouill C, Parent JL, Rola-Pleszczynski M, Stankova J (1997) Structural and functional requirements for agonist-induced internalization of the human platelet-activating factor receptor. J Biol Chem 272(34):21289–21295

    Article  PubMed  Google Scholar 

  • Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14(1):96–102

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84(2):553–561

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Jung G, Ruchala P, Wang W, Micewicz ED, Waring AJ et al (2009) Human alpha-defensins inhibit hemolysis mediated by cholesterol-dependent cytolysins. Infect Immun 77(9):4028–4040

    Article  PubMed  CAS  Google Scholar 

  • LeMessurier K, Hacker H, Tuomanen E, Redecke V (2010) Inhibition of T cells provides protection against early invasive pneumococcal disease. Infect Immun 78(12):5287–5294

    Article  PubMed  CAS  Google Scholar 

  • Loosli C (1940) Pathogenesis and pathology of lobar pneumonia. Lancet 60:49–54

    Google Scholar 

  • Lu YJ, Gross J, Bogaert D, Finn A, Bagrade L, Zhang Q et al (2008) Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog 4(9):e1000159

    Article  PubMed  CAS  Google Scholar 

  • Lu YJ, Skovsted IC, Thompson CM, Anderson PW, Malley R (2009) Mechanisms in the serotype-independent pneumococcal immunity induced in mice by intranasal vaccination with the cell wall polysaccharide. Microb Pathog 47(3):177–182

    Article  PubMed  CAS  Google Scholar 

  • Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM et al (2003) Recognition of pneumolysin by toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 100(4):1966–1971

    Article  PubMed  CAS  Google Scholar 

  • Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A (2006) Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 74(7):4014–4020

    Article  PubMed  CAS  Google Scholar 

  • Marion C, Burnaugh AM, Woodiga SA, King SJ (2011) Sialic acid transport contributes to pneumococcal colonization. Infect Immun 79(3):1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Marks M, Burns T, Abadi M, Seyoum B, Thornton J, Tuomanen E et al (2007) Influence of neutropenia on the course of serotype 8 pneumococcal pneumonia in mice. Infect Immun 75(4):1586–1597

    Article  PubMed  CAS  Google Scholar 

  • Marnell LL, Mold C, Volzer MA, Burlingame RW, Du Clos TW (1995) C-reactive protein binds to Fc gamma RI in transfected COS cells. J Immunol 155(4):2185–2193

    PubMed  CAS  Google Scholar 

  • Marriott HM, Dockrell DH (2006) Streptococcus pneumoniae: the role of apoptosis in host defense and pathogenesis. Int J Biochem Cell Biol 38(11):1848–1854

    Article  PubMed  CAS  Google Scholar 

  • Martin TR, Frevert CW (2005) Innate immunity in the lungs. Proc Am Thorac Soc 2(5):403–411

    Article  PubMed  CAS  Google Scholar 

  • Matute-Bello G, Frevert CW, Liles WC, Nakamura M, Ruzinski JT, Ballman K et al (2001a) Fas/Fas ligand system mediates epithelial injury, but not pulmonary host defenses, in response to inhaled bacteria. Infect Immun 69(9):5768–5776

    Article  PubMed  CAS  Google Scholar 

  • Matute-Bello G, Winn RK, Jonas M, Chi EY, Martin TR, Liles WC (2001b) Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am J Pathol 158(1):153–161

    Article  PubMed  CAS  Google Scholar 

  • Matute-Bello G, Liles WC, Frevert CW, Dhanireddy S, Ballman K, Wong V et al (2005) Blockade of the Fas/FasL system improves pneumococcal clearance from the lungs without preventing dissemination of bacteria to the spleen. J Infect Dis 191(4):596–606

    Article  PubMed  CAS  Google Scholar 

  • Maus UA, Srivastava M, Paton JC, Mack M, Everhart MB, Blackwell TS et al (2004) Pneumolysin-induced lung injury is independent of leukocyte trafficking into the alveolar space. J Immunol 173(2):1307–1312

    PubMed  CAS  Google Scholar 

  • McCool TL, Cate TR, Moy G, Weiser JN (2002) The immune response to pneumococcal proteins during experimental human carriage. J Exp Med 195(3):359–365

    Article  PubMed  CAS  Google Scholar 

  • McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D et al (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6(11):e1001191

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JA, Paul-Clark MJ, Clarke GW, McMaster SK, Cartwright N (2007) Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease. J Endocrinol 193(3):323–330

    Article  PubMed  CAS  Google Scholar 

  • Mizgerd JP, Meek BB, Kutkoski GJ, Bullard DC, Beaudet AL, Doerschuk CM (1996) Selectins and neutrophil traffic: margination and Streptococcus pneumoniae-induced emigration in murine lungs. J Exp Med 184(2):639–645

    Article  PubMed  CAS  Google Scholar 

  • Mizgerd JP, Kubo H, Kutkoski GJ, Bhagwan SD, Scharffetter-Kochanek K, Beaudet AL et al (1997) Neutrophil emigration in the skin, lungs, and peritoneum: different requirements for CD11/CD18 revealed by CD18-deficient mice. J Exp Med 186(8):1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Mizgerd JP, Horwitz BH, Quillen HC, Scott ML, Doerschuk CM (1999) Effects of CD18 deficiency on the emigration of murine neutrophils during pneumonia. J Immunol 163(2):995–999

    PubMed  CAS  Google Scholar 

  • Mogensen TH, Paludan SR, Kilian M, Ostergaard L (2006) Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 80(2):267–277

    Article  PubMed  CAS  Google Scholar 

  • Mold C, Du Clos TW (2006) C-reactive protein increases cytokine responses to Streptococcus pneumoniae through interactions with Fc gamma receptors. J Immunol 176(12):7598–7604

    PubMed  CAS  Google Scholar 

  • Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D (2011) Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev 24(3):557–591

    Article  PubMed  CAS  Google Scholar 

  • Moreland JG, Bailey G, Nauseef WM, Weiss JP (2004) Organism-specific neutrophil-endothelial cell interactions in response to Escherichia coli, Streptococcus pneumoniae, and Staphylococcus aureus. J Immunol 172(1):426–432

    PubMed  CAS  Google Scholar 

  • Nakamura S, Davis KM, Weiser JN (2011) Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. J Clin Invest 121(9):3657–3665

    Article  PubMed  CAS  Google Scholar 

  • Nakasone C, Yamamoto N, Nakamatsu M, Kinjo T, Miyagi K, Uezu K et al (2007) Accumulation of gamma/delta T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection. Microbes Infect 9(3):251–258

    Article  PubMed  CAS  Google Scholar 

  • Nelson AL, Ries J, Bagnoli F, Dahlberg S, Falker S, Rounioja S et al (2007a) RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol Microbiol 66(2):329–340

    Article  PubMed  CAS  Google Scholar 

  • Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ, Weiser JN (2007b) Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun 75(1):83–90

    Article  PubMed  CAS  Google Scholar 

  • O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE. 2000;2000(44):re1.

    Google Scholar 

  • Opitz B, Puschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S et al (2004) Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279(35):36426–36432

    Article  PubMed  CAS  Google Scholar 

  • Orihuela CJ, Gao G, Francis KP, Yu J, Tuomanen EI (2004) Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J Infect Dis 190(9):1661–1669

    Article  PubMed  CAS  Google Scholar 

  • Osler W (1897) On certain features in the prognosis of pneumonia. Am J Med Sci 113:1–10

    Article  Google Scholar 

  • Parker D, Martin FJ, Soong G, Harfenist BS, Aguilar JL, Ratner AJ et al (2011) Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. MBio 2(3):e00016–11

    Article  PubMed  CAS  Google Scholar 

  • Paton JC, Andrew PW, Boulnois GJ, Mitchell TJ (1993) Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol 47:89–115

    Article  PubMed  CAS  Google Scholar 

  • Pericone CD, Overweg K, Hermans PW, Weiser JN (2000) Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 68(7):3990–3997

    Article  PubMed  CAS  Google Scholar 

  • Radin JN, Orihuela CJ, Murti G, Guglielmo C, Murray PJ, Tuomanen EI (2005) beta-Arrestin 1 participates in platelet-activating factor receptor-mediated endocytosis of Streptococcus pneumoniae. Infect Immun 73(12):7827–7835

    Article  PubMed  CAS  Google Scholar 

  • Rake G (1936) Pathology of pneumococcus infection in mice following intranasal instillation. J Exp Med 63(1):17–31

    Article  PubMed  CAS  Google Scholar 

  • Ren B, Szalai AJ, Thomas O, Hollingshead SK, Briles DE (2003) Both family 1 and family 2 PspA proteins can inhibit complement deposition and confer virulence to a capsular serotype 3 strain of Streptococcus pneumoniae. Infect Immun 71(1):75–85

    Article  PubMed  CAS  Google Scholar 

  • Ren B, McCrory MA, Pass C, Bullard DC, Ballantyne CM, Xu Y et al (2004) The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection. J Immunol 173(12):7506–7512

    PubMed  CAS  Google Scholar 

  • Reynolds JH, McDonald G, Alton H, Gordon SB (2010) Pneumonia in the immunocompetent patient. Br J Radiol 83(996):998–1009

    Article  PubMed  CAS  Google Scholar 

  • Rich A, McKee C (1939) The pathogenicity of avirulent pneumococci for animals deprived of leukocytes. Bull J Hopkins Hosp 64:434–446

    Google Scholar 

  • Rodriguez ME, van der Pol WL, Sanders LA, van de Winkel JG (1999) Crucial role of FcgammaRIIa (CD32) in assessment of functional anti-Streptococcus pneumoniae antibody activity in human sera. J Infect Dis 179(2):423–433

    Article  PubMed  CAS  Google Scholar 

  • Rubins JB, Duane PG, Clawson D, Charboneau D, Young J, Niewoehner DE (1993) Toxicity of pneumolysin to pulmonary alveolar epithelial cells. Infect Immun 61(4):1352–1358

    PubMed  CAS  Google Scholar 

  • Sanchez CJ, Shivshankar P, Stol K, Trakhtenbroit S, Sullam PM, Sauer K et al (2010) The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 6(8):e1001044

    Article  PubMed  CAS  Google Scholar 

  • Schmeck B, Gross R, N’Guessan PD, Hocke AC, Hammerschmidt S, Mitchell TJ et al (2004) Streptococcus pneumoniae-induced caspase 6-dependent apoptosis in lung epithelium. Infect Immun 72(9):4940–4947

    Article  PubMed  CAS  Google Scholar 

  • Schmeck B, Huber S, Moog K, Zahlten J, Hocke AC, Opitz B et al (2006) Pneumococci induced TLR- and Rac1-dependent NF-kappaB-recruitment to the IL-8 promoter in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 290(4):L730–L737

    Article  PubMed  CAS  Google Scholar 

  • Sebert ME, Palmer LM, Rosenberg M, Weiser JN (2002) Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect Immun 70(8):4059–4067

    Article  PubMed  CAS  Google Scholar 

  • Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI (1985) Primary structures of three human neutrophil defensins. J Clin Invest 76(4):1436–1439

    Article  PubMed  CAS  Google Scholar 

  • Shaper M, Hollingshead SK, Benjamin WH Jr, Briles DE (2004) PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect Immun 72(9):5031–5040

    Article  PubMed  CAS  Google Scholar 

  • Siegel J, Rent R, Gewurz H (1974) Interactions of C-reactive protein with the complement system. I. Protamine-induced consumption of complement in acute phase sera. J Exp Med 140(3):631–647

    Article  PubMed  CAS  Google Scholar 

  • Sim GK, Rajaserkar R, Dessing M, Augustin A (1994) Homing and in situ differentiation of resident pulmonary lymphocytes. Int Immunol 6(9):1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idanpaan-Heikkila I, Rosenow C et al (1996) Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol Microbiol 19(4):803–813

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A, Henneke P, Visintin A, Morse SC, Martin V, Watkins C et al (2005) The apoptotic response to pneumolysin is toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun 73(10):6479–6487

    Article  PubMed  CAS  Google Scholar 

  • Stein MP, Edberg JC, Kimberly RP, Mangan EK, Bharadwaj D, Mold C et al (2000) C-reactive protein binding to FcgammaRIIa on human monocytes and neutrophils is allele-specific. J Clin Invest 105(3):369–376

    Article  PubMed  CAS  Google Scholar 

  • Stolzenberg ED, Anderson GM, Ackermann MR, Whitlock RH, Zasloff M (1997) Epithelial antibiotic induced in states of disease. Proc Natl Acad Sci U S A 94(16):8686–8690

    Article  PubMed  CAS  Google Scholar 

  • Sun K, Metzger DW (2008) Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat Med 14(5):558–564

    Article  PubMed  CAS  Google Scholar 

  • Sutliff W, Friedemann T (1938) A soluble edema-producing substance from the pneumococcus. J Immunol 34:455–467

    Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Tan TQ, Mason EO Jr, Barson WJ, Wald ER, Schutze GE, Bradley JS et al (1998) Clinical characteristics and outcome of children with pneumonia attributable to penicillin-susceptible and penicillin-nonsusceptible Streptococcus pneumoniae. Pediatrics 102(6):1369–1375

    Article  PubMed  CAS  Google Scholar 

  • Tasaka S, Richer SE, Mizgerd JP, Doerschuk CM (2002) Very late antigen-4 in CD18-independent neutrophil emigration during acute bacterial pneumonia in mice. Am J Respir Crit Care Med 166(1):53–60

    Article  PubMed  Google Scholar 

  • Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G (2006) Pili in gram-positive pathogens. Nat Rev Microbiol 4(7):509–519

    Article  PubMed  CAS  Google Scholar 

  • Thornton JA, Durick-Eder K, Tuomanen EI (2010) Pneumococcal pathogenesis: “innate invasion” yet organ-specific damage. J Mol Med 88(2):103–107

    Article  PubMed  Google Scholar 

  • Tonnesen MG, Anderson DC, Springer TA, Knedler A, Avdi N, Henson PM (1989) Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest 83(2):637–646

    Article  PubMed  CAS  Google Scholar 

  • Trappetti C, Kadioglu A, Carter M, Hayre J, Iannelli F, Pozzi G et al (2009) Sialic acid: a preventable signal for pneumococcal biofilm formation, colonization, and invasion of the host. J Infect Dis 199(10):1497–1505

    Article  PubMed  CAS  Google Scholar 

  • Tron K, Manolov DE, Rocker C, Kachele M, Torzewski J, Nienhaus GU (2008) C-reactive protein specifically binds to Fcgamma receptor type I on a macrophage-like cell line. Eur J Immunol 38(5):1414–1422

    Article  PubMed  CAS  Google Scholar 

  • Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN, Suzuki F (2004) Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21(2):215–226

    Article  PubMed  CAS  Google Scholar 

  • Tu AH, Fulgham RL, McCrory MA, Briles DE, Szalai AJ (1999) Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect Immun 67(9):4720–4724

    PubMed  CAS  Google Scholar 

  • Tuomanen E, Rich R, Zak O (1987a) Induction of pulmonary inflammation by components of the pneumococcal cell surface. Am Rev Respir Dis 135(4):869–874

    PubMed  CAS  Google Scholar 

  • Tuomanen E, Hengstler B, Rich R, Bray MA, Zak O, Tomasz A (1987b) Nonsteroidal anti-inflammatory agents in the therapy for experimental pneumococcal meningitis. J Infect Dis 155(5):985–990

    Article  PubMed  CAS  Google Scholar 

  • Tuomanen EI, Austrian R, Masure HR (1995) Pathogenesis of pneumococcal infection. N Engl J Med 332(19):1280–1284

    Article  PubMed  CAS  Google Scholar 

  • Tuomanen EI, Mitchell TJ, Morrison DA, Spratt BG (eds) (2000) The pneumococcus. ASM Press, Washington, DC

    Google Scholar 

  • van Iwaarden F, Welmers B, Verhoef J, Haagsman HP, van Golde LM (1990) Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 2(1):91–98

    PubMed  Google Scholar 

  • Van Iwaarden JF, Shimizu H, Van Golde PH, Voelker DR, Van Golde LM (1992) Rat surfactant protein D enhances the production of oxygen radicals by rat alveolar macrophages. Biochem J 286(Pt 1):5–8

    PubMed  Google Scholar 

  • Varpula T, Pettila V, Rintala E, Takkunen O, Valtonen V (2000) Late steroid therapy in primary acute lung injury. Intensive Care Med 26(5):526–531

    Article  PubMed  CAS  Google Scholar 

  • Volanakis JE, Kaplan MH (1971) Specificity of C-reactive protein for choline phosphate residues of pneumococcal C-polysaccharide. Proc Soc Exp Biol Med 136(2):612–614

    PubMed  CAS  Google Scholar 

  • Vollmer W, Tomasz A (2001) Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae. Mol Microbiol 39(6):1610–1622

    Article  PubMed  CAS  Google Scholar 

  • Wands JM, Roark CL, Aydintug MK, Jin N, Hahn YS, Cook L et al (2005) Distribution and leukocyte contacts of gammadelta T cells in the lung. J Leukoc Biol 78(5):1086–1096

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Bergeron Y, Bergeron MG (2005) Ceftriaxone pharmacokinetics in interleukin-10-treated murine pneumococcal pneumonia. J Antimicrob Chemother 55(5):721–726

    Article  PubMed  CAS  Google Scholar 

  • Warmerdam PA, van de Winkel JG, Vlug A, Westerdaal NA, Capel PJ (1991) A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J Immunol 147(4):1338–1343

    PubMed  CAS  Google Scholar 

  • Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinsky A, Normark S et al (2007) Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol 9(5):1162–1171

    Article  PubMed  CAS  Google Scholar 

  • Watson DA, Musher DM, Jacobson JW, Verhoef J (1993) A brief history of the pneumococcus in biomedical research: a panoply of scientific discovery. Clin Infect Dis 17(5):913–924

    Article  PubMed  CAS  Google Scholar 

  • Weber JR, Freyer D, Alexander C, Schröder NWJ, Reiss A, Küster C, Pfeil D, Tuomanen EI, Schumann RR (2003) Recognition of pneumococcal peptidoglycan: an expanded, pivotal role for LPS binding protein. Immunity 19:269–279

    Article  PubMed  CAS  Google Scholar 

  • Weber SE, Tian H, Pirofski LA (2011) CD8+ cells enhance resistance to pulmonary serotype 3 Streptococcus pneumoniae infection in mice. J Immunol 186(1):432–442

    Article  PubMed  CAS  Google Scholar 

  • Weiser JN, Austrian R, Sreenivasan PK, Masure HR (1994) Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62(6):2582–2589

    PubMed  CAS  Google Scholar 

  • Weiser JN, Shchepetov M, Chong ST (1997) Decoration of lipopolysaccharide with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae. Infect Immun 65(3):943–950

    PubMed  CAS  Google Scholar 

  • Weiser JN, Goldberg JB, Pan N, Wilson L, Virji M (1998a) The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infect Immun 66(9):4263–4267

    PubMed  CAS  Google Scholar 

  • Weiser JN, Pan N, McGowan KL, Musher D, Martin A, Richards J (1998b) Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J Exp Med 187(4):631–640

    Article  PubMed  CAS  Google Scholar 

  • Weiser JN, Bae D, Fasching C, Scamurra RW, Ratner AJ, Janoff EN (2003) Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci U S A 100(7):4215–4220

    Article  PubMed  CAS  Google Scholar 

  • Wissinger EL, Saldana J, Didierlaurent A, Hussell T (2008) Manipulation of acute inflammatory lung disease. Mucosal Immunol 1(4):265–278

    Article  PubMed  CAS  Google Scholar 

  • Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C et al (2011) The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol 187(1):434–440

    Article  PubMed  CAS  Google Scholar 

  • Wood WB, Smith MR, Watson B (1946) Studies on the mechanism of recovery in pneumococcal pneumonia: Iv. The mechanism of phagocytosis in the absence of antibody. J Exp Med 84(4):387–402

    Article  PubMed  CAS  Google Scholar 

  • Wright JR, Youmans DC (1993) Pulmonary surfactant protein A stimulates chemotaxis of alveolar macrophage. Am J Physiol 264(4 Pt 1):L338–L344

    PubMed  CAS  Google Scholar 

  • Xu F, Droemann D, Rupp J, Shen H, Wu X, Goldmann T et al (2008) Modulation of the inflammatory response to Streptococcus pneumoniae in a model of acute lung tissue infection. Am J Respir Cell Mol Biol 39(5):522–529

    Article  PubMed  CAS  Google Scholar 

  • Yee AM, Phan HM, Zuniga R, Salmon JE, Musher DM (2000) Association between FcgammaRIIa-R131 allotype and bacteremic pneumococcal pneumonia. Clin Infect Dis 30(1):25–28

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura A, Lien E, Ingalls R, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of gram-positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2. J Immunol 163:1–5

    PubMed  CAS  Google Scholar 

  • Yother J, Handsome GL, Briles DE (1992) Truncated forms of PspA that are secreted from Streptococcus pneumoniae and their use in functional studies and cloning of the pspA gene. J Bacteriol 174(2):610–618

    PubMed  CAS  Google Scholar 

  • Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M et al (2000) The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102(6):827–837

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Clarke TB, Weiser JN (2009) Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest 119(7):1899–1909

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Tuomanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Humann, J., LeMessurier, K., Tuomanen, E. (2013). Streptococcus pneumoniae: The Prototype of Lung Responses in Pneumonia. In: Prince, A. (eds) Mucosal Immunology of Acute Bacterial Pneumonia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5326-0_9

Download citation

Publish with us

Policies and ethics