Skip to main content

Pseudomonas aeruginosa and Mucosal Defenses in the Lung

  • Chapter
  • First Online:
Book cover Mucosal Immunology of Acute Bacterial Pneumonia
  • 1404 Accesses

Abstract

Commensal and opportunistic pathogens that populate the respiratory tract evolve within the host in response to the innate and adaptive immune clearance mechanisms. Pseudomonas aeruginosa, an opportunist, is not normally a component of the airway flora but is ubiquitous in the environment and especially common in health care-associated facilities (Crit Care Med 27:887ā€“892, 1999; Chest 119:373Sā€“384S, 2001). Although the focus of this review is not upon the pathogenesis of P. aeruginosa infection in cystic fibrosis (CF), there are substantial data examining host innate immune signaling in response to this organism in CF as compared to normal cells

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783ā€“801

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bianconi I, Milani A, Cigana C, Paroni M, Levesque RC, Bertoni G, Bragonzi A (2011) Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection. PLoS Pathog 7:e1001270

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bjarnsholt T, Jensen PƘ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, HĆøiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547ā€“558

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, Oā€™toole GA, Stanton BA (2009) Ā­Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer Ā­membrane vesicles. PLoS Pathog 5:e1000382

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bomberger JM, Ye S, Maceachran DP, Koeppen K, Barnaby RL, Oā€™toole GA, Stanton BA (2011) A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system. PLoS Pathog 7:e1001325

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bragonzi A, Paroni M, Nonis A, Cramer N, Montanari S, Rejman J, Di Serio C, Dƶring G, TĆ¼mmler B (2009) Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection Ā­establishes clones with adapted virulence. Am J Respir Crit Care Med 180:138ā€“145

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Cobb LM, Mychaleckyj JC, Wozniak DJ, LĆ³pez-Boado YS (2004) Pseudomonas aeruginosa flagellin and alginate elicit very distinct gene expression patterns in airway epithelial cells: implications for cystic fibrosis disease. J Immunol 173:5659ā€“5670

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cohen TS, Prince A (2012) Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 18:509ā€“519

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Craven DE, Hjalmarson KI (2010) Ventilatorā€associated tracheobronchitis and pneumonia: Ā­thinking outside the box. Clin Infect Dis 51:S59ā€“S66

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Cuzick A, Stirling FR, Lindsay SL, Evans TJ (2006) The type III pseudomonal exotoxin U Ā­activates the c-Jun NH2-terminal kinase pathway and increases human epithelial interleukin-8 Ā­production. Infect Immun 74:4104ā€“4113

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Davies JC, Stern M, Dewar A, Caplen NJ, Munkonge FM, Pitt T, Sorgi F, Huang L, Bush A, Geddes DM et al (1997) CFTR gene transfer reduces the binding of Pseudomonas aeruginosa to cystic fibrosis respiratory epithelium. Am J Respir Cell Mol Biol 16:657ā€“663

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Diaz MH, Hauser AR (2010) Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun 78:1447ā€“1456

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ernst RK, Moskowitz SM, Emerson JC, Kraig GM, Adams KN, Harvey MD, Ramsey B, Speert DP, Burns JL, Miller SI (2007) Unique lipid a modifications in Pseudomonas aeruginosa Ā­isolated from the airways of patients with cystic fibrosis. J Infect Dis 196:1088ā€“1092

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ernst RK, Yi EC, Guo L, Lim KB, Burns JL, Hackett M, Miller SI (1999) Specific lĀ­ipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286:1561ā€“1565

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fito-Boncompte L, Chapalain A, Bouffartigues E, Chaker H, Lesouhaitier O, Gicquel G, Bazire A, Madi A, Connil N, VĆ©ron W et al (2011) Full virulence of Pseudomonas aeruginosa requires OprF. Infect Immun 79:1176ā€“1186

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fuchs EL, Brutinel ED, Jones AK, Fulcher NB, Urbanowski ML, Yahr TL, Wolfgang MC (2010) The Pseudomonas aeruginosa Vfr regulator controls global virulence factor expression through cAMP-dependent and -independent mechanisms. J Bacteriol 192:3553ā€“3564

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fuxman Bass JI, Russo DM, Gabelloni ML, Geffner JR, Giordano M, Catalano M, Zorreguieta A, Trevani AS (2010) Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms. J Immunol 184:6386ā€“6395

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Galle M, Schotte P, Haegman M, Wullaert A, Yang HJ, Jin S, Beyaert R (2008) The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1beta maturation. J Cell Mol Med 12:1767ā€“1776

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gangloff SC, Hijiya N, Haziot A, Goyert SM (1999) Lipopolysaccharide structure influences the macrophage response via CD14-independent and CD14-dependent pathways. Clin Infect Dis 28:491ā€“496

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Garrett ES, Perlegas D, Wozniak DJ (1999) Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol 181:7401ā€“7404

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Geiser TK, Kazmierczak BI, Garrity-Ryan LK, Matthay MA, Engel JN (2001) Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol 3:223ā€“236

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Geurtsen J, Steeghs L, Hamstra H-J, Ten Hove J, de Haan A, Kuipers B, Tommassen J, van der Ley P (2006) Expression of the lipopolysaccharide-modifying enzymes PagP and PagL modulates the endotoxic activity of Bordetella pertussis. Infect Immun 74:5574ā€“5585

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Guina T, Purvine SO, Yi EC, Eng J, Goodlett DR, Aebersold R, Miller SI (2003) Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci USA 100:2771ā€“2776

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS, Hackett M, Miller SI (1998) Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95:189ā€“198

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hajjar AM, Ernst RK, Tsai JH, Wilson CB, Miller SI (2002) Human Toll-like receptor 4 Ā­recognizes host-specific LPS modifications. Nat Immunol 3:354ā€“359

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hazlett LD, Moon MM, Singh A, Berk RS, Rudner XL (1991) Analysis of adhesion, piliation, protease production and ocular infectivity of several P. aeruginosa strains. Curr Eye Res 10:351ā€“362

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hoboth C, Hoffmann R, Eichner A, Henke C, Schmoldt S, Imhof A, Heesemann J, Hogardt M (2009) Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200:118ā€“130

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Huse HK, Kwon T, Zlosnik JEA, Speert DP, Marcotte EM, Whiteley M (2010) Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo. MBio 1:19910

    ArticleĀ  Google ScholarĀ 

  • Jain M, Ramirez D, Seshadri R, Cullina JF, Powers CA, Schulert GS, Bar-Meir M, Sullivan CL, McColley SA, Hauser AR (2004) Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 42:5229ā€“5237

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9:361ā€“368

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kawasaki K, Ernst RK, Miller SI (2004) 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like Ā­receptor 4. J Biol Chem 279:20044ā€“20048

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kierbel A, Gassama-Diagne A, Rocha C, Radoshevich L, Olson J, Mostov K, Engel J (2007) Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into Ā­basolateral membrane. J Cell Biol 177:21ā€“27

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Look DC, Stoll LL, Romig SA, Humlicek A, Britigan BE, Denning GM (2005) Pyocyanin and its precursor phenazine-1-carboxylic acid increase IL-8 and intercellular adhesion molecule-1 expression in human airway epithelial cells by oxidant-dependent mechanisms. J Immunol 175:4017ā€“4023

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lynch JP (2001) Hospital-acquired pneumonia: risk factors, microbiology, and treatment. Chest 119:373Sā€“384S

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Mahenthiralingam E, Campbell ME, Speert DP (1994) Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596ā€“605

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Martin DW, Schurr MJ, Mudd MH, Govan JR, Holloway BW, Deretic V (1993) Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci USA 90:8377ā€“8381

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • McMorran B, Town L, Costelloe E, Palmer J, Engel J, Hume D, Wainwright B (2003) Effector ExoU from the type III secretion system is an important modulator of gene expression in lung epithelial cells in response to Pseudomonas aeruginosa infection. Infect Immun 71:6035ā€“6044

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Miao EA, Ernst RK, Dors M, Mao DP, Aderem A (2008) Pseudomonas aeruginosa activates Ā­caspase 1 through Ipaf. Proc Natl Acad Sci USA 105:2562ā€“2567

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Morris AE, Liggitt HD, Hawn TR, Skerrett SJ (2009) Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol 297:L1112ā€“L1119

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Oā€™Callaghan J, Reen JF, Adams C, Casey PG, Gahan CG, Oā€™Gara F (2012) A novel host Ā­responsive sensor mediates virulence and type III secretion during Pseudomonas aeruginosa-host cell interactions. Microbiology (Reading, Engl) 158:1057ā€“1070

    ArticleĀ  Google ScholarĀ 

  • Oliver A, Baquero F, BlĆ”zquez J (2002) The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641ā€“1650

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Oliver A, CantĆ³n R, Campo P, Baquero F, BlĆ”zquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251ā€“1254

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127ā€“1130

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91:197ā€“201

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Pedersen SS (1992) Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl 28:1ā€“79

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Ā­mutations in Tlr4 gene. Science 282:2085ā€“2088

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rada B, Lekstrom K, Damian S, Dupuy C, Leto TL (2008) The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181:4883ā€“4893

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical Ā­intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 27:887ā€“892

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • RodrĆ­guez-Rojas A, Oliver A, BlĆ”zquez J (2012) Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections. J Infect Dis 205:121ā€“127

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ, Yamamoto M, Akira S, Oā€™Neill LA, Fitzgerald KA, Golenbock DT (2006) The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA 103:6299ā€“6304

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Saiman L, Prince A (1993) Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92:1875ā€“1880

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Saiman L, Ishimoto K, Lory S, Prince A (1990) The effect of piliation and exoproduct expression on the adherence of Pseudomonas aeruginosa to respiratory epithelial monolayers. J Infect Dis 161:541ā€“548

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvappa R, Griswold JA, Hamood AN (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53:841ā€“853

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • SchiĆøtz PO, Nielsen H, HĆøiby N, Glikmann G, Svehag SE (1978) Immune complexes in the Ā­sputum of patients with cystic fibrosis suffering from chronic Pseudomonas aeruginosa lung infection. Acta Pathol Microbiol Scand C 86:37ā€“40

    PubMedĀ  Google ScholarĀ 

  • Schulert GS, Feltman H, Rabin SDP, Martin CG, Battle SE, Rello J, Hauser AR (2003) Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis 188:1695ā€“1706

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Schwarzer C, Fischer H, Kim E-J, Barber KJ, Mills AD, Kurth MJ, Gruenert DC, Suh JH, Machen TE, Illek B (2008) Oxidative stress caused by pyocyanin impairs CFTR Cl(āˆ’) transport in human bronchial epithelial cells. Free Radic Biol Med 45:1653ā€“1662

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Silo-Suh L, Suh S-J, Sokol PA, Ohman DE (2002) A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc Natl Acad Sci USA 99:15699ā€“15704

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Ā­Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762ā€“764

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, Dā€™Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM et al (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103:8487ā€“8492

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Soong G, Parker D, Magargee M, Prince AS (2008) The type III toxins of Pseudomonas Ā­aeruginosa disrupt epithelial barrier function. J Bacteriol 190:2814ā€“2821

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune Ā­recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235ā€“3245

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Tart AH, Wolfgang MC, Wozniak DJ (2005) The alternative sigma factor AlgT represses Pseudomonas aeruginosa flagellum biosynthesis by inhibiting expression of fleQ. J Bacteriol 187:7955ā€“7962

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Vinckx T, Wei Q, Matthijs S, Cornelis P (2010) The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of Ā­pyocyanin. Microbiology 156:678ā€“686

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Visintin A, Mazzoni A, Spitzer JA, Segal DM (2001) Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci USA 98:12156ā€“12161

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372ā€“4380

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Williamson KS, Richards LA, Perez-Osorio AC, Pitts B, Mcinnerney K, Stewart PS, Franklin MJ (2012) Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic tolerant subpopulation and hypoxia induced stress response in the metabolically active population. J Bacteriol 194:2062ā€“2073

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wu W, Badrane H, Arora S, Baker HV, Jin S (2004) MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. J Bacteriol 186:7575ā€“7585

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, Cavalcoli JD, Vandevanter DR, Murray S, Li JZ et al (2012) Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA 109:5809ā€“5814

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zughaier SM, Ryley HC, Jackson SK (1999) Lipopolysaccharide (LPS) from Burkholderia Ā­cepacia is more active than LPS from Pseudomonas aeruginosa and Stenotrophomonas maltophilia in stimulating tumor necrosis factor alpha from human monocytes. Infect Immun 67:1505ā€“1507

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taylor S. Cohen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, T.S. (2013). Pseudomonas aeruginosa and Mucosal Defenses in the Lung. In: Prince, A. (eds) Mucosal Immunology of Acute Bacterial Pneumonia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5326-0_11

Download citation

Publish with us

Policies and ethics