Skip to main content

Alveolar Macrophages

  • Chapter
  • First Online:
Mucosal Immunology of Acute Bacterial Pneumonia

Abstract

Alveolar macrophages (AM) are sentinels of the immune response to bacteria in the lung. AM development in the lung results in a unique differentiation program which distinguishes AM from other tissue macrophages and equips them to subserve their primary physiological roles in pulmonary homeostasis. The response to bacteria requires an adaption of function to ensure that host defense is achieved while limiting unwanted inflammatory responses in the airspace. AM utilize a range of receptors to phagocytose bacteria but their intracellular killing capacity is finite. With larger inocula of infection AM play critical roles in regulating the inflammatory response. Signal transduction via diverse pattern recognition receptors allows AM to coordinate the immune response of a range of different cell types and to contribute to the cytokine network during infection. A key feature of the optimal AM response to bacterial infection is that the inflammatory response is kept at the minimum required to successfully control infection. When the inflammatory response is upregulated, it is tightly controlled and promptly downsized to minimize tissue damage and prevent compromise to gas exchange in the alveolar space. Bacteria in turn subvert these responses to try and establish their own ecological niche, which can as a consequence result in pneumonia or its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  PubMed  CAS  Google Scholar 

  • Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K, Katsuragi H et al (2007) Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol 9(3):633–644

    Article  PubMed  CAS  Google Scholar 

  • Alcorn JF, Wright JR (2004) Degradation of pulmonary surfactant protein D by Pseudomonas aeruginosa elastase abrogates innate immune function. J Biol Chem 279(29):30871–30879

    Article  PubMed  CAS  Google Scholar 

  • Ali F, Lee ME, Iannelli F, Pozzi G, Mitchell TJ, Read RC et al (2003) Streptococcus pneumoniae-associated human macrophage apoptosis after bacterial internalization via complement and Fcgamma receptors correlates with intracellular bacterial load. J Infect Dis 188(8):1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Allavena P, Chieppa M, Monti P, Piemonti L (2004) From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. Crit Rev Immunol 24(3):179–192

    Article  PubMed  CAS  Google Scholar 

  • Amiel E, Lovewell RR, O’Toole GA, Hogan DA, Berwin B (2010) Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression. Infect Immun 78(7):2937–2945

    Article  PubMed  CAS  Google Scholar 

  • Anthony RM, Urban JF Jr, Alem F, Hamed HA, Rozo CT, Boucher JL et al (2006) Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med 12(8):955–960

    Article  PubMed  CAS  Google Scholar 

  • Antonini JM, Lawryk NJ, Murthy GG, Brain JD (1999) Effect of welding fume solubility on lung macrophage viability and function in vitro. J Toxicol Environ Health A 58(6):343–363

    Article  PubMed  CAS  Google Scholar 

  • Antonini JM, Leonard SS, Roberts JR, Solano-Lopez C, Young SH, Shi X et al (2005) Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Mol Cell Biochem 279(1–2):17–23

    Article  PubMed  CAS  Google Scholar 

  • Aronoff DM, Canetti C, Peters-Golden M (2004) Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J Immunol 173(1):559–565

    PubMed  CAS  Google Scholar 

  • Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M (2005) Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol 174(2):595–599

    PubMed  CAS  Google Scholar 

  • Arredouani M, Yang Z, Ning Y, Qin G, Soininen R, Tryggvason K et al (2004) The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200(2):267–272

    Article  PubMed  CAS  Google Scholar 

  • Arredouani MS, Palecanda A, Koziel H, Huang YC, Imrich A, Sulahian TH et al (2005) MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol 175(9):6058–6064

    PubMed  CAS  Google Scholar 

  • Assis MC, Freitas C, Saliba AM, D’A Carvalho AP, Simao TA, Albano RM et al (2006) Up-regulation of Fas expression by Pseudomonas aeruginosa-infected endothelial cells depends on modulation of iNOS and enhanced production of NO induced by bacterial type III secreted proteins. Int J Mol Med 18(2):355–363

    PubMed  CAS  Google Scholar 

  • Athamna A, Ofek I, Keisari Y, Markowitz S, Dutton GG, Sharon N (1991) Lectinophagocytosis of encapsulated Klebsiella pneumoniae mediated by surface lectins of guinea pig alveolar macrophages and human monocyte-derived macrophages. Infect Immun 59(5):1673–1682

    PubMed  CAS  Google Scholar 

  • Bantel H, Sinha B, Domschke W, Peters G, Schulze-Osthoff K, Janicke RU (2001) alpha-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J Cell Biol 155(4):637–648

    Article  PubMed  CAS  Google Scholar 

  • Bartlett JG, O’Keefe P, Tally FP, Louie TJ, Gorbach SL (1986) Bacteriology of hospital-acquired pneumonia. Arch Intern Med 146(5):868–871

    Article  PubMed  CAS  Google Scholar 

  • Beharka AA, Gaynor CD, Kang BK, Voelker DR, McCormack FX, Schlesinger LS (2002) Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J Immunol 169(7):3565–3573

    PubMed  CAS  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739

    PubMed  CAS  Google Scholar 

  • Berenson CS, Garlipp MA, Grove LJ, Maloney J, Sethi S (2006) Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J Infect Dis 194(10):1375–1384

    Article  PubMed  Google Scholar 

  • Berger M, Norvell TM, Tosi MF, Emancipator SN, Konstan MW, Schreiber JR (1994) Tissue-specific Fc gamma and complement receptor expression by alveolar macrophages determines relative importance of IgG and complement in promoting phagocytosis of Pseudomonas aeruginosa. Pediatr Res 35(1):68–77

    Article  PubMed  CAS  Google Scholar 

  • Bermpohl D, Halle A, Freyer D, Dagand E, Braun JS, Bechmann I et al (2005) Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J Clin Invest 115(6):1607–1615

    Article  PubMed  CAS  Google Scholar 

  • Bewley MA, Marriott HM, Tulone C, Francis SE, Mitchell TJ, Read RC et al (2011a) A cardinal role for cathepsin d in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci. PLoS Pathog 7(1):e1001262

    Article  PubMed  CAS  Google Scholar 

  • Bewley MA, Pham TK, Marriott HM, Noirel J, Chu HP, Ow SY et al (2011b) Proteomic evaluation and validation of cathepsin D regulated proteins in macrophages exposed to Streptococcus pneumoniae. Mol Cell Proteomics 10(6):M111.008193

    Article  PubMed  CAS  Google Scholar 

  • Bianchi SM, Prince LR, McPhillips K, Allen L, Marriott HM, Taylor GW et al (2008) Impairment of apoptotic cell engulfment by pyocyanin, a toxic metabolite of Pseudomonas aeruginosa. Am J Respir Crit Care Med 177(1):35–43

    Article  PubMed  CAS  Google Scholar 

  • Bidani A, Reisner BS, Haque AK, Wen J, Helmer RE, Tuazon DM et al (2000) Bactericidal activity of alveolar macrophages is suppressed by V-ATPase inhibition. Lung 178(2):91–104

    Article  PubMed  CAS  Google Scholar 

  • Biggar WD, Buron S, Holmes B (1976) Bactericidal mechanisms in rabbit alveolar macrophages: evidence against peroxidase and hydrogen peroxide bactericidal mechanisms. Infect Immun 14(1):6–10

    PubMed  CAS  Google Scholar 

  • Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304(5673):1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal RL, Campbell DE, Hwang P, DeKruyff RH, Frankel LR, Umetsu DT (2001) Human alveolar macrophages induce functional inactivation in antigen-specific CD4 T cells. J Allergy Clin Immunol 107(2):258–264

    Article  PubMed  CAS  Google Scholar 

  • Blusse van Oud Alblas A, van der Linden-Schrever B, Van Furth R (1983) Origin and kinetics of pulmonary macrophages during an inflammatory reaction induced by intra-alveolar administration of aerosolized heat-killed BCG. Am Rev Respir Dis 128(2):276–281

    PubMed  CAS  Google Scholar 

  • Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P et al (2004) Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun 72(2):788–794

    Article  PubMed  CAS  Google Scholar 

  • Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, Tuomanen EI et al (2002) Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. J Clin Invest 109(1):19–27

    PubMed  CAS  Google Scholar 

  • Brown GD, Gordon S (2003) Fungal beta-glucans and mammalian immunity. Immunity 19(3):311–315

    Article  PubMed  CAS  Google Scholar 

  • Brown JS, Hussell T, Gilliland SM, Holden DW, Paton JC, Ehrenstein MR et al (2002) The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci U S A 99(26):16969–16974

    Article  PubMed  CAS  Google Scholar 

  • Bühling F, Ittenson A, Kaiser D, Thölert G, Hoffmann B, Reinhold D et al (2000) MRP8/MRP14, CD11b and HLA-DR expression of alveolar macrophages in pneumonia. Immunol Lett 71(3):185–190

    Article  PubMed  Google Scholar 

  • Buret A, Dunkley ML, Pang G, Clancy RL, Cripps AW (1994) Pulmonary immunity to Pseudomonas aeruginosa in intestinally immunized rats roles of alveolar macrophages, tumor necrosis factor alpha, and interleukin-1 alpha. Infect Immun 62(12):5335–5343

    PubMed  CAS  Google Scholar 

  • Burnett D, Crocker J, Stockley RA (1983) Cathepsin B-like cysteine proteinase activity in sputum and immunohistologic identification of cathepsin B in alveolar macrophages. Am Rev Respir Dis 128(5):915–919

    PubMed  CAS  Google Scholar 

  • Cai S, Batra S, Shen L, Wakamatsu N, Jeyaseelan S (2009) Both TRIF- and MyD88-dependent signaling contribute to host defense against pulmonary Klebsiella infection. J Immunol 183(10):6629–6638

    Article  PubMed  CAS  Google Scholar 

  • Canetti C, Aronoff DM, Choe M, Flamand N, Wettlaufer S, Toews GB et al (2006) Differential regulation by leukotrienes and calcium of Fc gamma receptor-induced phagocytosis and Syk activation in dendritic cells versus macrophages. J Leukoc Biol 79(6):1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Canetti C, Serezani CH, Atrasz RG, White ES, Aronoff DM, Peters-Golden M (2007) Activation of phosphatase and tensin homolog on chromosome 10 mediates the inhibition of FcgammaR phagocytosis by prostaglandin E2 in alveolar macrophages. J Immunol 179(12):8350–8356

    PubMed  CAS  Google Scholar 

  • Chelen CJ, Fang Y, Freeman GJ, Secrist H, Marshall JD, Hwang PT et al (1995) Human alveolar macrophages present antigen ineffectively due to defective expression of B7 costimulatory cell surface molecules. J Clin Invest 95(3):1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Cheung DO, Halsey K, Speert DP (2000) Role of pulmonary alveolar macrophages in defense of the lung against Pseudomonas aeruginosa. Infect Immun 68(8):4585–4592

    Article  PubMed  CAS  Google Scholar 

  • Chmiel JF, Davis PB (2003) State of the art: why do the lungs of patients with cystic fibrosis become infected and why can’t they clear the infection? Respir Res 4:8

    Article  PubMed  Google Scholar 

  • Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL et al (2010) Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8(5):445–454

    Article  PubMed  CAS  Google Scholar 

  • Clatworthy MR, Smith KG (2004) FcgammaRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J Exp Med 199(5):717–723

    Article  PubMed  CAS  Google Scholar 

  • Coffey MJ, Phare SM, Kazanjian PH, Peters-Golden M (1996) 5-Lipoxygenase metabolism in alveolar macrophages from subjects infected with the human immunodeficiency virus. J Immunol 157(1):393–399

    PubMed  CAS  Google Scholar 

  • Coggon D, Inskip H, Winter P, Pannett B (1994) Lobar pneumonia: an occupational disease in welders. Lancet 344(8914):41–43

    Article  PubMed  CAS  Google Scholar 

  • Cohen AB, Cline MJ (1971) The human alveolar macrophage: isolation, cultivation in vitro, and studies of morphologic and functional characteristics. J Clin Invest 50(7):1390–1398

    Article  PubMed  CAS  Google Scholar 

  • Cohn ZA, Benson B (1965) The differentiation of mononuclear phagocytes. Morphology, cytochemistry, and biochemistry. J Exp Med 121:153–170

    Article  PubMed  CAS  Google Scholar 

  • Cohn ZA, Fedorko ME, Hirsch JG (1966) The in vitro differentiation of mononuclear phagocytes: V. The formation of macrophage lysosomes. J Exp Med 123(4):757–766

    Article  PubMed  CAS  Google Scholar 

  • Cortes G, Borrell N, de Astorza B, Gomez C, Sauleda J, Alberti S (2002) Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect Immun 70(5):2583–2590

    Article  PubMed  CAS  Google Scholar 

  • Craig JE, Cliffe A, Garnett K, High NJ (2001) Survival of nontypeable Haemophilus influenzae in macrophages. FEMS Microbiol Lett 203(1):55–61

    Article  PubMed  CAS  Google Scholar 

  • Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112(5):645–657

    Article  PubMed  CAS  Google Scholar 

  • Crowther JE, Kutala VK, Kuppusamy P, Ferguson JS, Beharka AA, Zweier JL et al (2004) Pulmonary surfactant protein a inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity. J Immunol 172(11):6866–6874

    PubMed  CAS  Google Scholar 

  • Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5(1):e8668

    Article  PubMed  CAS  Google Scholar 

  • Das D, Bishayi B (2009) Staphylococcal catalase protects intracellularly survived bacteria by destroying H2O2 produced by the murine peritoneal macrophages. Microb Pathog 47(2):57–67

    Article  PubMed  CAS  Google Scholar 

  • Davis KM, Nakamura S, Weiser JN (2011) Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. J Clin Invest 121(9):3666–3676

    Article  PubMed  CAS  Google Scholar 

  • DeLoid GM, Sulahian TH, Imrich A, Kobzik L (2009) Heterogeneity in macrophage phagocytosis of Staphylococcus aureus strains: high-throughput scanning cytometry-based analysis. PLoS One 4(7):e6209

    Article  PubMed  CAS  Google Scholar 

  • Deriy LV, Gomez EA, Zhang G, Beacham DW, Hopson JA, Gallan AJ et al (2009) Disease-causing mutations in the cystic fibrosis transmembrane conductance regulator determine the functional responses of alveolar macrophages. J Biol Chem 284(51):35926–35938

    Article  PubMed  CAS  Google Scholar 

  • Devalon ML, Elliott GR, Regelmann WE (1987) Oxidative response of human neutrophils, monocytes, and alveolar macrophages induced by unopsonized surface-adherent Staphylococcus aureus. Infect Immun 55(10):2398–2403

    PubMed  CAS  Google Scholar 

  • Di A, Brown ME, Deriy LV, Li C, Szeto FL, Chen Y et al (2006) CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 8(9):933–944

    Article  PubMed  CAS  Google Scholar 

  • Dockrell DH, Lee M, Lynch DH, Read RC (2001) Immune-mediated phagocytosis and killing of Streptococcus pneumoniae are associated with direct and bystander macrophage apoptosis. J Infect Dis 184(6):713–722

    Article  PubMed  CAS  Google Scholar 

  • Dockrell DH, Marriott HM, Prince LR, Ridger VC, Ince PG, Hellewell PG et al (2003) Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J Immunol 171(10):5380–5388

    PubMed  CAS  Google Scholar 

  • Droemann D, Aries SP, Hansen F, Moellers M, Braun J, Katus HA et al (2000) Decreased apoptosis and increased activation of alveolar neutrophils in bacterial pneumonia. Chest 117(6):1679–1684

    Article  PubMed  CAS  Google Scholar 

  • Dumont AL, Nygaard TK, Watkins RL, Smith A, Kozhaya L, Kreiswirth BN et al (2011) Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79(3):814–825

    Article  PubMed  CAS  Google Scholar 

  • Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci U S A 91(5):1863–1867

    Article  PubMed  CAS  Google Scholar 

  • Eagan R, Twigg HL III, French N, Musaya J, Day RB, Zijlstra EE et al (2007) Lung fluid immunoglobulin from HIV-infected subjects has impaired opsonic function against pneumococci. Clin Infect Dis 44(12):1632–1638

    Article  PubMed  CAS  Google Scholar 

  • Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286

    Article  PubMed  CAS  Google Scholar 

  • Esposito AL, Clark CA, Poirier WJ (1988) An assessment of the respiratory burst and bactericidal activity of alveolar macrophages from adult and senescent mice. J Leukoc Biol 43(5):445–454

    PubMed  CAS  Google Scholar 

  • Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101(4):890–898

    Article  PubMed  CAS  Google Scholar 

  • Fang R, Tsuchiya K, Kawamura I, Shen Y, Hara H, Sakai S et al (2011) Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J Immunol 187(9):4890–4899

    Article  PubMed  CAS  Google Scholar 

  • Farnworth SL, Henderson NC, Mackinnon AC, Atkinson KM, Wilkinson T, Dhaliwal K et al (2008) Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol 172(2):395–405

    Article  PubMed  CAS  Google Scholar 

  • Fels AO, Cohn ZA (1986) The alveolar macrophage. J Appl Physiol 60(2):353–369

    PubMed  CAS  Google Scholar 

  • Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, Galan JE et al (2006) Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci U S A 103(33):12487–12492

    Article  PubMed  CAS  Google Scholar 

  • Fick RB Jr, Naegel GP, Matthay RA, Reynolds HY (1981) Cystic fibrosis pseudomonas opsonins. Inhibitory nature in an in vitro phagocytic assay. J Clin Invest 68(4):899–914

    Article  PubMed  CAS  Google Scholar 

  • Finley TN, Swenson EW, Curran WS, Huber GL, Ladman AJ (1967) Bronchopulmonary lavage in normal subjects and patients with obstructive lung disease. Ann Intern Med 66(4):651–658

    PubMed  CAS  Google Scholar 

  • Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–247

    Article  PubMed  CAS  Google Scholar 

  • Ganesan S, Faris AN, Comstock AT, Sonstein J, Curtis JL, Sajjan US (2012) Elastase/LPS-exposed mice exhibit impaired innate immune responses to bacterial challenge role of scavenger receptor A. Am J Pathol 180(1):61–72

    Article  PubMed  CAS  Google Scholar 

  • Gantner F, Kupferschmidt R, Schudt C, Wendel A, Hatzelmann A (1997) In vitro differentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-alpha release by PDE inhibitors. Br J Pharmacol 121(2):221–231

    Article  PubMed  CAS  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197(9):1107–1117

    Article  PubMed  CAS  Google Scholar 

  • Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelker DR, Greene KE et al (2003) By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • Garedew A, Henderson SO, Moncada S (2010) Activated macrophages utilize glycolytic ATP to maintain mitochondrial membrane potential and prevent apoptotic cell death. Cell Death Differ 17(10):1540–1550

    Article  PubMed  CAS  Google Scholar 

  • Geertsma MF, Broos HR, van den Barselaar MT, Nibbering PH, van Furth R (1993) Lung surfactant suppresses oxygen-dependent bactericidal functions of human blood monocytes by inhibiting the assembly of the NADPH oxidase. J Immunol 150(6):2391–2400

    PubMed  CAS  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  PubMed  CAS  Google Scholar 

  • Giannoni E, Sawa T, Allen L, Wiener-Kronish J, Hawgood S (2006) Surfactant proteins A and D enhance pulmonary clearance of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol 34(6):704–710

    Article  PubMed  CAS  Google Scholar 

  • Gil M, McCormack FX, Levine AM (2009) Surfactant protein A modulates cell surface expression of CR3 on alveolar macrophages and enhances CR3-mediated phagocytosis. J Biol Chem 284(12):7495–7504

    Article  PubMed  CAS  Google Scholar 

  • Glasser SW, Senft AP, Whitsett JA, Maxfield MD, Ross GF, Richardson TR et al (2008) Macrophage dysfunction and susceptibility to pulmonary Pseudomonas aeruginosa infection in surfactant protein C-deficient mice. J Immunol 181(1):621–628

    PubMed  CAS  Google Scholar 

  • Gleeson K, Eggli DF, Maxwell SL (1997) Quantitative aspiration during sleep in normal subjects. Chest 111(5):1266–1272

    Article  PubMed  CAS  Google Scholar 

  • Goldblatt D, Thrasher AJ (2000) Chronic granulomatous disease. Clin Exp Immunol 122(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Goldmann O, von Kockritz-Blickwede M, Holtje C, Chhatwal GS, Geffers R, Medina E (2007) Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 75(8):4148–4157

    Article  PubMed  CAS  Google Scholar 

  • Goldstein E, Lippert W, Warshauer D (1974) Pulmonary alveolar macrophage. Defender against bacterial infection of the lung. J Clin Invest 54(3):519–528

    Article  PubMed  CAS  Google Scholar 

  • Gomis SM, Godson DL, Wobeser GA, Potter AA (1997) Effect of Haemophilus somnus on nitric oxide production and chemiluminescence response of bovine blood monocytes and alveolar macrophages. Microb Pathog 23(6):327–333

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    Article  PubMed  CAS  Google Scholar 

  • Gordon SB, Irving GR, Lawson RA, Lee ME, Read RC (2000) Intracellular trafficking and killing of Streptococcus pneumoniae by human alveolar macrophages are influenced by opsonins. Infect Immun 68(4):2286–2293

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Kirschnek S, Riethmueller J, Riehle A, von Kurthy G, Lang F et al (2000) CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290(5491):527–530

    Article  PubMed  CAS  Google Scholar 

  • Green GM, Kass EH (1964) The role of the alveolar macrophage in the clearance of bacteria from the lung. J Exp Med 119:167–176

    Article  PubMed  CAS  Google Scholar 

  • Greenberg S (1995) Signal transduction of phagocytosis. Trends Cell Biol 5(3):93–99

    Article  PubMed  CAS  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92(9):3007–3017

    PubMed  CAS  Google Scholar 

  • Hashimoto S, Pittet JF, Hong K, Folkesson H, Bagby G, Kobzik L et al (1996) Depletion of alveolar macrophages decreases neutrophil chemotaxis to Pseudomonas airspace infections. Am J Physiol 270(5 pt 1):L819–L828

    PubMed  CAS  Google Scholar 

  • Hauser AR, Engel JN (1999) Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67(10):5530–5537

    PubMed  CAS  Google Scholar 

  • Heale JP, Speert DP (2001) Protein kinase C agonists enhance phagocytosis of P. aeruginosa by murine alveolar macrophages. J Leukoc Biol 69(1):158–160

    PubMed  CAS  Google Scholar 

  • Henning LN, Azad AK, Parsa KV, Crowther JE, Tridandapani S, Schlesinger LS (2008) Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J Immunol 180(12):7847–7858

    PubMed  CAS  Google Scholar 

  • Herre J, Gordon S, Brown GD (2004a) Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol 40(12):869–876

    Article  PubMed  CAS  Google Scholar 

  • Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E et al (2004b) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104(13):4038–4045

    Article  PubMed  CAS  Google Scholar 

  • Hickman-Davis JM, O’Reilly P, Davis IC, Peti-Peterdi J, Davis G, Young KR et al (2002) Killing of Klebsiella pneumoniae by human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 282(5):L944–L956

    PubMed  CAS  Google Scholar 

  • Hof DG, Repine JE, Peterson PK, Hoidal JR (1980) Phagocytosis by human alveolar macrophages and neutrophils: qualitative differences in the opsonic requirements for uptake of Staphylococcus aureus and Streptococcus pneumoniae in vitro. Am Rev Respir Dis 121(1):65–71

    PubMed  CAS  Google Scholar 

  • Hoidal JR, Beall GD, Rasp FL Jr, Holmes B, White JG, Repine JE (1978) Comparison of the metabolism of alveolar macrophages from humans, rats, and rabbits: phorbol myristate acetate. J Lab Clin Med 92(5):787–794

    PubMed  CAS  Google Scholar 

  • Holt PG (1986) Down-regulation of immune responses in the lower respiratory tract: the role of alveolar macrophages. Clin Exp Immunol 63(2):261–270

    PubMed  CAS  Google Scholar 

  • Holt PG, Oliver J, Bilyk N, McMenamin C, McMenamin PG, Kraal G et al (1993) Down-regulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med 177(2):397–407

    Article  PubMed  CAS  Google Scholar 

  • Hoogerwerf JJ, de Vos AF, Bresser P, van der Zee JS, Pater JM, de Boer A et al (2008) Lung inflammation induced by lipoteichoic acid or lipopolysaccharide in humans. Am J Respir Crit Care Med 178(1):34–41

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Jennings JH, Sonstein J, Floros J, Todt JC, Polak T et al (2004) Resident murine alveolar and peritoneal macrophages differ in adhesion of apoptotic thymocytes. Am J Respir Cell Mol Biol 30(5):687–693

    Article  PubMed  CAS  Google Scholar 

  • Hubbard LL, Ballinger MN, Thomas PE, Wilke CA, Standiford TJ, Kobayashi KS et al (2010) A role for IL-1 receptor-associated kinase-M in prostaglandin E2-induced immunosuppression post-bone marrow transplantation. J Immunol 184(11):6299–6308

    Article  PubMed  CAS  Google Scholar 

  • Hubbard LL, Wilke CA, White ES, Moore BB (2011) PTEN limits alveolar macrophage function against Pseudomonas aeruginosa after bone marrow transplantation. Am J Respir Cell Mol Biol 45(5):1050–1058

    Article  PubMed  CAS  Google Scholar 

  • Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109(1):41–50

    PubMed  CAS  Google Scholar 

  • Hyams C, Yuste J, Bax K, Camberlein E, Weiser JN, Brown JS (2010) Streptococcus pneumoniae resistance to complement-mediated immunity is dependent on the capsular serotype. Infect Immun 78(2):716–725

    Article  PubMed  CAS  Google Scholar 

  • Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3(5):371–382

    Article  PubMed  CAS  Google Scholar 

  • Ip WK, Sokolovska A, Charriere GM, Boyer L, Dejardin S, Cappillino MP et al (2010) Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus. J Immunol 184(12):7071–7081

    Article  PubMed  CAS  Google Scholar 

  • Jakubzick C, Tacke F, Llodra J, van Rooijen N, Randolph GJ (2006) Modulation of dendritic cell trafficking to and from the airways. J Immunol 176(6):3578–3584

    PubMed  CAS  Google Scholar 

  • Janssen WJ, McPhillips KA, Dickinson MG, Linderman DJ, Morimoto K, Xiao YQ et al (2008) Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am J Respir Crit Care Med 178(2):158–167

    Article  PubMed  CAS  Google Scholar 

  • Jarry TM, Memmi G, Cheung AL (2008) The expression of alpha-haemolysin is required for Staphylococcus aureus phagosomal escape after internalization in CFT-1 cells. Cell Microbiol 10(9):1801–1814

    Article  PubMed  CAS  Google Scholar 

  • Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N et al (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332(6035):1284–1288

    Article  PubMed  CAS  Google Scholar 

  • Jennings JH, Linderman DJ, Hu B, Sonstein J, Curtis JL (2005) Monocytes recruited to the lungs of mice during immune inflammation ingest apoptotic cells poorly. Am J Respir Cell Mol Biol 32(2):108–117

    Article  PubMed  CAS  Google Scholar 

  • Jesch NK, Dorger M, Enders G, Rieder G, Vogelmeier C, Messmer K et al (1997) Expression of inducible nitric oxide synthase and formation of nitric oxide by alveolar macrophages: an interspecies comparison. Environ Health Perspect 105(suppl 5):1297–1300

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Opalek JM, Marsh CB, Wu HM (2004) Proteome comparison of alveolar macrophages with monocytes reveals distinct protein characteristics. Am J Respir Cell Mol Biol 31(3):322–329

    Article  PubMed  CAS  Google Scholar 

  • Johansson A, Lundborg M, Skold CM, Lundahl J, Tornling G, Eklund A et al (1997) Functional, morphological, and phenotypical differences between rat alveolar and interstitial macrophages. Am J Respir Cell Mol Biol 16(5):582–588

    PubMed  CAS  Google Scholar 

  • Jonsson S, Musher DM, Chapman A, Goree A, Lawrence EC (1985) Phagocytosis and killing of common bacterial pathogens of the lung by human alveolar macrophages. J Infect Dis 152(1):4–13

    Article  PubMed  CAS  Google Scholar 

  • Jonsson S, Musher DM, Lawrence EC (1987) Phagocytosis and killing of Haemophilus influenzae by alveolar macrophages: no difference between smokers and non-smokers. Eur J Respir Dis 70(5):309–315

    PubMed  CAS  Google Scholar 

  • Kabha K, Schmegner J, Keisari Y, Parolis H, Schlepper-Schaeffer J, Ofek I (1997) SP-A enhances phagocytosis of Klebsiella by interaction with capsular polysaccharides and alveolar macrophages. Am J Physiol 272(2 pt 1):L344–L352

    PubMed  CAS  Google Scholar 

  • Kannan S, Audet A, Huang H, Chen LJ, Wu M (2008) Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during Pseudomonas aeruginosa infection. J Immunol 180(4):2396–2408

    PubMed  CAS  Google Scholar 

  • Kapetanovic R, Nahori MA, Balloy V, Fitting C, Philpott DJ, Cavaillon JM et al (2007) Contribution of phagocytosis and intracellular sensing for cytokine production by Staphylococcus aureus-activated macrophages. Infect Immun 75(2):830–837

    Article  PubMed  CAS  Google Scholar 

  • Kapetanovic R, Parlato M, Fitting C, Quesniaux V, Cavaillon JM, Adib-Conquy M (2011) Mechanisms of TNF induction by heat-killed Staphylococcus aureus differ upon the origin of mononuclear phagocytes. Am J Physiol Cell Physiol 300(4):C850–C859

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kojima K, Murachi T (1972) Proteases of macrophages in rat peritoneal exudate, with special reference to the effects of actinomycete protease inhibitors. Biochim Biophys Acta 289(1):187–193

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SH (2008) Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat Immunol 9(7):705–712

    Article  PubMed  CAS  Google Scholar 

  • Kirby AC, Coles MC, Kaye PM (2009) Alveolar macrophages transport pathogens to lung draining lymph nodes. J Immunol 183(3):1983–1989

    Article  PubMed  CAS  Google Scholar 

  • Kjellstrom C, Ichimura K, Chen XJ, Riise GC, Collins VP (2000) The origin of alveolar macrophages in the transplanted lung: a longitudinal microsatellite-based study of donor and recipient DNA. Transplantation 69(9):1984–1986

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Leemans JC, Florquin S, Branger J, Maris NA, Pater J et al (2003) Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia. Am J Respir Crit Care Med 167(2):171–179

    Article  PubMed  Google Scholar 

  • Knapp S, Wieland CW, van ’t Veer C, Takeuchi O, Akira S, Florquin S et al (2004) Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J Immunol 172(5):3132–3138

    PubMed  CAS  Google Scholar 

  • Kobzik L (1995) Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors. J Immunol 155(1):367–376

    PubMed  CAS  Google Scholar 

  • Kobzik L, Godleski JJ, Brain JD (1990) Oxidative metabolism in the alveolar macrophage: analysis by flow cytometry. J Leukoc Biol 47(4):295–303

    PubMed  CAS  Google Scholar 

  • Kooguchi K, Hashimoto S, Kobayashi A, Kitamura Y, Kudoh I, Wiener-Kronish J et al (1998) Role of alveolar macrophages in initiation and regulation of inflammation in Pseudomonas aeruginosa pneumonia. Infect Immun 66(7):3164–3169

    PubMed  CAS  Google Scholar 

  • Koziel J, Maciag-Gudowska A, Mikolajczyk T, Bzowska M, Sturdevant DE, Whitney AR et al (2009) Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One 4(4):e5210

    Article  PubMed  CAS  Google Scholar 

  • Kradin RL, McCarthy KM, Preffer FI, Schneeberger EE (1986) Flow-cytometric and ultrastructural analysis of alveolar macrophage maturation. J Leukoc Biol 40(4):407–417

    PubMed  CAS  Google Scholar 

  • Krakauer T (2002) Stimulant-dependent modulation of cytokines and chemokines by airway epithelial cells: cross talk between pulmonary epithelial and peripheral blood mononuclear cells. Clin Diagn Lab Immunol 9(1):126–131

    PubMed  CAS  Google Scholar 

  • Kruger W, Russmann B, Kroger N, Salomon C, Ekopf N, Elsner HA et al (1999) Early infections in patients undergoing bone marrow or blood stem cell transplantation—a 7 year single centre investigation of 409 cases. Bone Marrow Transplant 23(6):589–597

    Article  PubMed  CAS  Google Scholar 

  • Kubica M, Guzik K, Koziel J, Zarebski M, Richter W, Gajkowska B et al (2008) A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One 3(1):e1409

    Article  PubMed  CAS  Google Scholar 

  • Kuronuma K, Sano H, Kato K, Kudo K, Hyakushima N, Yokota S et al (2004) Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J Biol Chem 279(20):21421–21430

    Article  PubMed  CAS  Google Scholar 

  • Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH (2011) Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186(11):6445–6453

    Article  PubMed  CAS  Google Scholar 

  • Laarman AJ, Bardoel BW, Ruyken M, Fernie J, Milder FJ, van Strijp JA et al (2012) Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J Immunol 188(1):386–393

    Article  PubMed  CAS  Google Scholar 

  • Lagler H, Sharif O, Haslinger I, Matt U, Stich K, Furtner T et al (2009) TREM-1 activation alters the dynamics of pulmonary IRAK-M expression in vivo and improves host defense during pneumococcal pneumonia. J Immunol 183(3):2027–2036

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht BN (2006) Alveolar macrophage in the driver’s seat. Immunity 24(4):366–368

    Article  PubMed  CAS  Google Scholar 

  • Landsman L, Jung S (2007) Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J Immunol 179(6):3488–3494

    PubMed  CAS  Google Scholar 

  • Landsman L, Varol C, Jung S (2007) Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol 178(4):2000–2007

    PubMed  CAS  Google Scholar 

  • Lavnikova N, Prokhorova S, Helyar L, Laskin DL (1993) Isolation and partial characterization of subpopulations of alveolar macrophages, granulocytes, and highly enriched interstitial macrophages from rat lung. Am J Respir Cell Mol Biol 8(4):384–392

    PubMed  CAS  Google Scholar 

  • Lee DA, Hoidal JR, Garlich DJ, Clawson CC, Quie PG, Peterson PK (1984) Opsonin-independent phagocytosis of surface-adherent bacteria by human alveolar macrophages. J Leukoc Biol 36(6):689–701

    PubMed  CAS  Google Scholar 

  • Lee KS, Scanga CA, Bachelder EM, Chen Q, Snapper CM (2007) TLR2 synergizes with both TLR4 and TLR9 for induction of the MyD88-dependent splenic cytokine and chemokine response to Streptococcus pneumoniae. Cell Immunol 245(2):103–110

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, Serezani CH, Medeiros AI, Ballinger MN, Peters-Golden M (2009) Crosstalk between prostaglandin E2 and leukotriene B4 regulates phagocytosis in alveolar macrophages via combinatorial effects on cyclic AMP. J Immunol 182(1):530–537

    PubMed  CAS  Google Scholar 

  • Lee JS, Collard HR, Raghu G, Sweet MP, Hays SR, Campos GM et al (2010) Does chronic microaspiration cause idiopathic pulmonary fibrosis? Am J Med 123(4):304–311

    Article  PubMed  Google Scholar 

  • Lehtonen A, Ahlfors H, Veckman V, Miettinen M, Lahesmaa R, Julkunen I (2007) Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J Leukoc Biol 82(3):710–720

    Article  PubMed  CAS  Google Scholar 

  • Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175(11):7512–7518

    PubMed  CAS  Google Scholar 

  • Lekstrom-Himes JA, Gallin JI (2000) Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med 343(23):1703–1714

    Article  PubMed  CAS  Google Scholar 

  • LeVine AM, Whitsett JA, Gwozdz JA, Richardson TR, Fisher JH, Burhans MS et al (2000) Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J Immunol 165(7):3934–3940

    PubMed  CAS  Google Scholar 

  • Lindgren H, Golovliov I, Baranov V, Ernst RK, Telepnev M, Sjostedt A (2004) Factors affecting the escape of Francisella tularensis from the phagolysosome. J Med Microbiol 53(pt 10):953–958

    Article  PubMed  Google Scholar 

  • Liu H, Perlman H, Pagliari LJ, Pope RM (2001) Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages. Role of Mcl-1, independent of nuclear factor (NF)-kappaB, Bad, or caspase activation. J Exp Med 194(2):113–126

    Article  PubMed  CAS  Google Scholar 

  • Lossos IS, Breuer R, Or R, Strauss N, Elishoov H, Naparstek E et al (1995) Bacterial pneumonia in recipients of bone marrow transplantation. A five-year prospective study. Transplantation 60(7):672–678

    Article  PubMed  CAS  Google Scholar 

  • Luzar MA, Thomassen MJ, Montie TC (1985) Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: relationship to patient clinical condition. Infect Immun 50(2):577–582

    PubMed  CAS  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2(9):1051–1060

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H et al (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180(4):2650–2658

    PubMed  CAS  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  PubMed  CAS  Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378

    Article  PubMed  CAS  Google Scholar 

  • Mahenthiralingam E, Speert DP (1995) Nonopsonic phagocytosis of Pseudomonas aeruginosa by macrophages and polymorphonuclear leukocytes requires the presence of the bacterial flagellum. Infect Immun 63(11):4519–4523

    PubMed  CAS  Google Scholar 

  • Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM et al (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 100(4):1966–1971

    Article  PubMed  CAS  Google Scholar 

  • Mancuso P, Peters-Golden M (2000) Modulation of alveolar macrophage phagocytosis by leukotrienes is Fc receptor-mediated and protein kinase C-dependent. Am J Respir Cell Mol Biol 23(6):727–733

    PubMed  CAS  Google Scholar 

  • Mancuso P, Standiford TJ, Marshall T, Peters-Golden M (1998) 5-Lipoxygenase reaction products modulate alveolar macrophage phagocytosis of Klebsiella pneumoniae. Infect Immun 66(11):5140–5146

    PubMed  CAS  Google Scholar 

  • Mancuso P, Huffnagle GB, Olszewski MA, Phipps J, Peters-Golden M (2006) Leptin corrects host defense defects after acute starvation in murine pneumococcal pneumonia. Am J Respir Crit Care Med 173(2):212–218

    Article  PubMed  CAS  Google Scholar 

  • Mancuso P, Peters-Golden M, Goel D, Goldberg J, Brock TG, Greenwald-Yarnell M et al (2011) Disruption of leptin receptor-STAT3 signaling enhances leukotriene production and pulmonary host defense against pneumococcal pneumonia. J Immunol 186(2):1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    Article  PubMed  CAS  Google Scholar 

  • Mariencheck WI, Savov J, Dong Q, Tino MJ, Wright JR (1999) Surfactant protein A enhances alveolar macrophage phagocytosis of a live, mucoid strain of P. aeruginosa. Am J Physiol 277(4 pt 1):L777–L786

    PubMed  CAS  Google Scholar 

  • Mariencheck WI, Alcorn JF, Palmer SM, Wright JR (2003) Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. Am J Respir Cell Mol Biol 28(4):528–537

    Article  PubMed  CAS  Google Scholar 

  • Marriott HM, Ali F, Read RC, Mitchell TJ, Whyte MK, Dockrell DH (2004) Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB J 18(10):1126–1128

    PubMed  CAS  Google Scholar 

  • Marriott HM, Bingle CD, Read RC, Braley KE, Kroemer G, Hellewell PG et al (2005) Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. J Clin Invest 115(2):359–368

    PubMed  CAS  Google Scholar 

  • Marriott HM, Hellewell PG, Cross SS, Ince PG, Whyte MK, Dockrell DH (2006) Decreased alveolar macrophage apoptosis is associated with increased pulmonary inflammation in a murine model of pneumococcal pneumonia. J Immunol 177(9):6480–6488

    PubMed  CAS  Google Scholar 

  • Marriott HM, Hellewell PG, Whyte MK, Dockrell DH (2007) Contrasting roles for reactive oxygen species and nitric oxide in the innate response to pulmonary infection with Streptococcus pneumoniae. Vaccine 25(13):2485–2490

    Article  PubMed  CAS  Google Scholar 

  • Marriott HM, Jackson LE, Wilkinson TS, Simpson AJ, Mitchell TJ, Buttle DJ et al (2008a) Reactive oxygen species regulate neutrophil recruitment and survival in pneumococcal pneumonia. Am J Respir Crit Care Med 177(8):887–895

    Article  PubMed  Google Scholar 

  • Marriott HM, Mitchell TJ, Dockrell DH (2008b) Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr Mol Med 8(6):497–509

    Article  PubMed  CAS  Google Scholar 

  • Marriott HM, Gascoyne KA, Gowda R, Geary I, Nicklin MJ, Iannelli F et al (2012) IL-1beta regulates CXCL8 release and influences disease outcome in response to Streptococcus pneumoniae, defining intracellular cooperation between pulmonary epithelial cells and macrophages. Infect Immun 80(3):1140–1149

    Article  PubMed  CAS  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  PubMed  CAS  Google Scholar 

  • Matute-Bello G, Lee JS, Frevert CW, Liles WC, Sutlief S, Ballman K et al (2004) Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice. J Immunol Methods 292(1–2):25–34

    Article  PubMed  CAS  Google Scholar 

  • Maus UA, Srivastava M, Paton JC, Mack M, Everhart MB, Blackwell TS et al (2004) Pneumolysin-induced lung injury is independent of leukocyte trafficking into the alveolar space. J Immunol 173(2):1307–1312

    PubMed  CAS  Google Scholar 

  • Maus UA, Janzen S, Wall G, Srivastava M, Blackwell TS, Christman JW et al (2006) Resident alveolar macrophages are replaced by recruited monocytes in response to endotoxin-induced lung inflammation. Am J Respir Cell Mol Biol 35(2):227–235

    Article  PubMed  CAS  Google Scholar 

  • McDonough KA, Kress Y, Bloom BR (1993) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61(7):2763–2773

    PubMed  CAS  Google Scholar 

  • McNeely TB, Coonrod JD (1993) Comparison of the opsonic activity of human surfactant protein A for Staphylococcus aureus and Streptococcus pneumoniae with rabbit and human macrophages. J Infect Dis 167(1):91–97

    Article  PubMed  CAS  Google Scholar 

  • McNeely TB, Coonrod JD (1994) Aggregation and opsonization of type A but not type B Hemophilus influenzae by surfactant protein A. Am J Respir Cell Mol Biol 11(1):114–122

    PubMed  CAS  Google Scholar 

  • Medeiros AI, Serezani CH, Lee SP, Peters-Golden M (2009) Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J Exp Med 206(1):61–68

    Article  PubMed  CAS  Google Scholar 

  • Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE et al (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107(7):3076–3080

    Article  PubMed  CAS  Google Scholar 

  • Mikerov AN, Wang G, Umstead TM, Zacharatos M, Thomas NJ, Phelps DS et al (2007) Surfactant protein A2 (SP-A2) variants expressed in CHO cells stimulate phagocytosis of Pseudomonas aeruginosa more than do SP-A1 variants. Infect Immun 75(3):1403–1412

    Article  PubMed  CAS  Google Scholar 

  • Mombelli M, Lugrin J, Rubino I, Chanson AL, Giddey M, Calandra T et al (2011) Histone deacetylase inhibitors impair antibacterial defenses of macrophages. J Infect Dis 204(9):1367–1374

    Article  PubMed  CAS  Google Scholar 

  • Morris GE, Whyte MK, Martin GF, Jose PJ, Dower SK, Sabroe I (2005) Agonists of toll-like receptors 2 and 4 activate airway smooth muscle via mononuclear leukocytes. Am J Respir Crit Care Med 171(8):814–822

    Article  PubMed  Google Scholar 

  • Morris GE, Parker LC, Ward JR, Jones EC, Whyte MK, Brightling CE et al (2006) Cooperative molecular and cellular networks regulate Toll-like receptor-dependent inflammatory responses. FASEB J 20(12):2153–2155

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73(2):209–212

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  PubMed  CAS  Google Scholar 

  • Murphey SA, Root RK, Schreiber AD (1979) The role of antibody and complement in phagocytosis by rabbit alveolar macrophages. J Infect Dis 140(6):896–903

    Article  PubMed  CAS  Google Scholar 

  • Murphy J, Summer R, Wilson AA, Kotton DN, Fine A (2008) The prolonged life-span of alveolar macrophages. Am J Respir Cell Mol Biol 38(4):380–385

    Article  PubMed  CAS  Google Scholar 

  • Myrvik Q, Leake ES, Fariss B (1961) Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to procure them in a high state of purity. J Immunol 86:128–132

    PubMed  CAS  Google Scholar 

  • Nakata K, Gotoh H, Watanabe J, Uetake T, Komuro I, Yuasa K et al (1999) Augmented proliferation of human alveolar macrophages after allogeneic bone marrow transplantation. Blood 93(2):667–673

    PubMed  CAS  Google Scholar 

  • Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH et al (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113(10):2324–2335

    Article  PubMed  CAS  Google Scholar 

  • Newman SL, Henson JE, Henson PM (1982) Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J Exp Med 156(2):430–442

    Article  PubMed  CAS  Google Scholar 

  • Nibbering PH, van den Barselaar MT, van de Gevel JS, Leijh PC, van Furth R (1989) Deficient intracellular killing of bacteria by murine alveolar macrophages. Am J Respir Cell Mol Biol 1(5):417–422

    PubMed  CAS  Google Scholar 

  • Nicholson S, Bonecini-Almeida Mda G, Lapa e Silva JR, Nathan C, Xie QW, Mumford R et al (1996) Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183(5):2293–2302

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuis EE, Matsumoto T, Exley M, Schleipman RA, Glickman J, Bailey DT et al (2002) CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat Med 8(6):588–593

    Article  PubMed  CAS  Google Scholar 

  • Noel GJ, Mosser DM, Edelson PJ (1990) Role of complement in mouse macrophage binding of Haemophilus influenzae type b. J Clin Invest 85(1):208–218

    Article  PubMed  CAS  Google Scholar 

  • Ofek I, Mesika A, Kalina M, Keisari Y, Podschun R, Sahly H et al (2001) Surfactant protein D enhances phagocytosis and killing of unencapsulated phase variants of Klebsiella pneumoniae. Infect Immun 69(1):24–33

    Article  PubMed  CAS  Google Scholar 

  • Ojielo CI, Cooke K, Mancuso P, Standiford TJ, Olkiewicz KM, Clouthier S et al (2003) Defective phagocytosis and clearance of Pseudomonas aeruginosa in the lung following bone marrow transplantation. J Immunol 171(8):4416–4424

    PubMed  CAS  Google Scholar 

  • Oldenborg PA, Gresham HD, Lindberg FP (2001) CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med 193(7):855–862

    Article  PubMed  CAS  Google Scholar 

  • Opitz B, Puschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S et al (2004) Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279(35):36426–36432

    Article  PubMed  CAS  Google Scholar 

  • Oren R, Farnham AE, Saito K, Milofsky E, Karnovsky ML (1963) Metabolic patterns in three types of phagocytizing cells. J Cell Biol 17:487–501

    Article  PubMed  CAS  Google Scholar 

  • Pagliari LJ, Perlman H, Liu H, Pope RM (2000) Macrophages require constitutive NF-kappaB activation to maintain A1 expression and mitochondrial homeostasis. Mol Cell Biol 20(23):8855–8865

    Article  PubMed  CAS  Google Scholar 

  • Pan YJ, Lin TL, Hsu CR, Wang JT (2011) Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae. Infect Immun 79(3):997–1006

    Article  PubMed  CAS  Google Scholar 

  • Papermaster-Bender G, Whitcomb ME, Sagone AL Jr (1980) Characterization of the metabolic responses of the human pulmonary alveolar macrophage. J Reticuloendothel Soc 28(2):129–139

    PubMed  CAS  Google Scholar 

  • Passlick B, Flieger D, Ziegler-Heitbrock HW (1989) Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74(7):2527–2534

    PubMed  CAS  Google Scholar 

  • Peres CM, Aronoff DM, Serezani CH, Flamand N, Faccioli LH, Peters-Golden M (2007) Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions. J Immunol 179(8):5454–5461

    PubMed  CAS  Google Scholar 

  • Perlman H, Pagliari LJ, Georganas C, Mano T, Walsh K, Pope RM (1999) FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis. J Exp Med 190(11):1679–1688

    Article  PubMed  CAS  Google Scholar 

  • Peters-Golden M, McNish RW, Hyzy R, Shelly C, Toews GB (1990) Alterations in the pattern of arachidonate metabolism accompany rat macrophage differentiation in the lung. J Immunol 144(1):263–270

    PubMed  CAS  Google Scholar 

  • Phipps JC, Aronoff DM, Curtis JL, Goel D, O’Brien E, Mancuso P (2010) Cigarette smoke exposure impairs pulmonary bacterial clearance and alveolar macrophage complement-mediated phagocytosis of Streptococcus pneumoniae. Infect Immun 78(3):1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Piantadosi CA, Schwartz DA (2004) The acute respiratory distress syndrome. Ann Intern Med 141(6):460–470

    PubMed  Google Scholar 

  • Pierangeli SS, Sonnenfeld G (1993) Treatment of murine macrophages with murine interferon-gamma and tumour necrosis factor-alpha enhances uptake and intracellular killing of Pseudomonas aeruginosa. Clin Exp Immunol 93(2):165–171

    Article  PubMed  CAS  Google Scholar 

  • Pinkett MO, Cowdrey CR, Nowell PC (1966) Mixed hematopoietic and pulmonary origin of ‘alveolar macrophages’ as demonstrated by chromosome markers. Am J Pathol 48(5):859–867

    PubMed  CAS  Google Scholar 

  • Poliska S, Csanky E, Szanto A, Szatmari I, Mesko B, Szeles L et al (2011) Chronic obstructive pulmonary disease-specific gene expression signatures of alveolar macrophages as well as peripheral blood monocytes overlap and correlate with lung function. Respiration 81(6):499–510

    Article  PubMed  CAS  Google Scholar 

  • Pons AR, Noguera A, Blanquer D, Sauleda J, Pons J, Agustí AGN (2005) Phenotypic characterisation of alveolar macrophages and peripheral blood monocytes in COPD. Eur Respir J 25(4):647–652

    Article  PubMed  CAS  Google Scholar 

  • Preston JA, Dockrell DH (2008) Virulence factors in pneumococcal respiratory pathogenesis. Future Microbiol 3(2):205–221

    Article  PubMed  CAS  Google Scholar 

  • Prokhorova S, Lavnikova N, Laskin DL (1994) Functional characterization of interstitial macrophages and subpopulations of alveolar macrophages from rat lung. J Leukoc Biol 55(2):141–146

    PubMed  CAS  Google Scholar 

  • Quinton LJ, Jones MR, Simms BT, Kogan MS, Robson BE, Skerrett SJ et al (2007) Functions and regulation of NF-kappaB RelA during pneumococcal pneumonia. J Immunol 178(3):1896–1903

    PubMed  CAS  Google Scholar 

  • Ramphal R, Balloy V, Jyot J, Verma A, Si-Tahar M, Chignard M (2008) Control of Pseudomonas aeruginosa in the lung requires the recognition of either lipopolysaccharide or flagellin. J Immunol 181(1):586–592

    PubMed  CAS  Google Scholar 

  • Raoust E, Balloy V, Garcia-Verdugo I, Touqui L, Ramphal R, Chignard M (2009) Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLR-dependent signaling in murine alveolar macrophages and airway epithelial cells. PLoS One 4(10):e7259

    Article  PubMed  CAS  Google Scholar 

  • Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G et al (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416(6878):291–297

    Article  PubMed  CAS  Google Scholar 

  • Rehm SR, Coonrod JD (1982) Early clearance of pneumococci from the lungs of decomplemented rats. Infect Immun 36(1):24–29

    PubMed  CAS  Google Scholar 

  • Restrepo CI, Dong Q, Savov J, Mariencheck WI, Wright JR (1999) Surfactant protein D stimulates phagocytosis of Pseudomonas aeruginosa by alveolar macrophages. Am J Respir Cell Mol Biol 21(5):576–585

    PubMed  CAS  Google Scholar 

  • Reynolds HY, Newball HH (1974) Analysis of proteins and respiratory cells obtained from human lungs by bronchial lavage. J Lab Clin Med 84(4):559–573

    PubMed  CAS  Google Scholar 

  • Reynolds HY, Atkinson JP, Newball HH, Frank MM (1975) Receptors for immunoglobulin and complement on human alveolar macrophages. J Immunol 114(6):1813–1819

    PubMed  CAS  Google Scholar 

  • Roiniotis J, Dinh H, Masendycz P, Turner A, Elsegood CL, Scholz GM et al (2009) Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol 182(12):7974–7981

    Article  PubMed  CAS  Google Scholar 

  • Sabroe I, Read RC, Whyte MK, Dockrell DH, Vogel SN, Dower SK (2003a) Toll-like receptors in health and disease: complex questions remain. J Immunol 171(4):1630–1635

    PubMed  CAS  Google Scholar 

  • Sabroe I, Prince LR, Jones EC, Horsburgh MJ, Foster SJ, Vogel SN et al (2003b) Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J Immunol 170(10):5268–5275

    PubMed  CAS  Google Scholar 

  • Sakiniene E, Bremell T, Tarkowski A (1997) Inhibition of nitric oxide synthase (NOS) aggravates Staphylococcus aureus septicaemia and septic arthritis. Clin Exp Immunol 110(3):370–377

    Article  PubMed  CAS  Google Scholar 

  • Sanchez CJ, Shivshankar P, Stol K, Trakhtenbroit S, Sullam PM, Sauer K et al (2010) The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 6(8):e1001044

    Article  PubMed  CAS  Google Scholar 

  • Sanchez CJ, Hinojosa CA, Shivshankar P, Hyams C, Camberlein E, Brown JS et al (2011) Changes in capsular serotype alter the surface exposure of pneumococcal adhesins and impact virulence. PLoS One 6(10):e26587

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I et al (2003) Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 112(3):389–397

    PubMed  CAS  Google Scholar 

  • Sato S, Nomura F, Kawai T, Takeuchi O, Muhlradt PF, Takeda K et al (2000) Synergy and cross-tolerance between toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways. J Immunol 165(12):7096–7101

    PubMed  CAS  Google Scholar 

  • Sawyer RT, Strausbauch PH, Volkman A (1982) Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Lab Invest 46(2):165–170

    PubMed  CAS  Google Scholar 

  • Schabbauer G, Matt U, Gunzl P, Warszawska J, Furtner T, Hainzl E et al (2010) Myeloid PTEN promotes inflammation but impairs bactericidal activities during murine pneumococcal pneumonia. J Immunol 185(1):468–476

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7(8):345–350

    Article  PubMed  CAS  Google Scholar 

  • Serezani CH, Aronoff DM, Jancar S, Mancuso P, Peters-Golden M (2005) Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase. Blood 106(3):1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Serezani CH, Chung J, Ballinger MN, Moore BB, Aronoff DM, Peters-Golden M (2007) Prostaglandin E2 suppresses bacterial killing in alveolar macrophages by inhibiting NADPH oxidase. Am J Respir Cell Mol Biol 37(5):562–570

    Article  PubMed  CAS  Google Scholar 

  • Sever-Chroneos Z, Krupa A, Davis J, Hasan M, Yang CH, Szeliga J et al (2011) Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A. J Biol Chem 286(6):4854–4870

    Article  PubMed  CAS  Google Scholar 

  • Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O’Connor TP et al (2009) Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol 183(4):2867–2883

    Article  PubMed  CAS  Google Scholar 

  • Simon LM, Robin ED, Phillips JR, Acevedo J, Axline SG, Theodore J (1977) Enzymatic basis for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2. J Clin Invest 59(3):443–448

    Article  PubMed  CAS  Google Scholar 

  • Skerrett SJ, Wilson CB, Liggitt HD, Hajjar AM (2007) Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 292(1):L312–L322

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, McCullers JA, Adler FR (2011) Mathematical model of a three-stage innate immune response to a pneumococcal lung infection. J Theor Biol 276(1):106–116

    Article  PubMed  CAS  Google Scholar 

  • Sokol RJ, Hudson G, James NT, Frost IJ, Wales J (1987) Human macrophage development: a morphometric study. J Anat 151:27–35

    PubMed  CAS  Google Scholar 

  • Speert DP, Thorson L (1991) Suppression by human recombinant gamma interferon of in vitro macrophage nonopsonic and opsonic phagocytosis and killing. Infect Immun 59(6):1893–1898

    PubMed  CAS  Google Scholar 

  • Srivastava M, Jung S, Wilhelm J, Fink L, Buhling F, Welte T et al (2005a) The inflammatory versus constitutive trafficking of mononuclear phagocytes into the alveolar space of mice is associated with drastic changes in their gene expression profiles. J Immunol 175(3):1884–1893

    PubMed  CAS  Google Scholar 

  • Srivastava A, Henneke P, Visintin A, Morse SC, Martin V, Watkins C et al (2005b) The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun 73(10):6479–6487

    Article  PubMed  CAS  Google Scholar 

  • St Geme JW III, de la Morena ML, Falkow S (1994) A Haemophilus influenzae IgA protease-like protein promotes intimate interaction with human epithelial cells. Mol Microbiol 14(2):217–233

    Article  PubMed  CAS  Google Scholar 

  • Standiford TJ, Kunkel SL, Phan SH, Rollins BJ, Strieter RM (1991) Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 266(15):9912–9918

    PubMed  CAS  Google Scholar 

  • Standish AJ, Weiser JN (2009) Human neutrophils kill Streptococcus pneumoniae via serine proteases. J Immunol 183(4):2602–2609

    Article  PubMed  CAS  Google Scholar 

  • Steele C, Marrero L, Swain S, Harmsen AG, Zheng M, Brown GD et al (2003) Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med 198(11):1677–1688

    Article  PubMed  CAS  Google Scholar 

  • Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. J Cell Biol 96(1):1–27

    Article  PubMed  CAS  Google Scholar 

  • Stuart LM, Deng J, Silver JM, Takahashi K, Tseng AA, Hennessy EJ et al (2005) Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol 170(3):477–485

    Article  PubMed  CAS  Google Scholar 

  • Swanson JA, Hoppe AD (2004) The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 76(6):1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Tarling JD, Lin HS, Hsu S (1987) Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies. J Leukoc Biol 42(5):443–446

    PubMed  CAS  Google Scholar 

  • Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  PubMed  CAS  Google Scholar 

  • Thomas ED, Ramberg RE, Sale GE, Sparkes RS, Golde DW (1976) Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science 192(4243):1016–1018

    Article  PubMed  CAS  Google Scholar 

  • Thomas CA, Li Y, Kodama T, Suzuki H, Silverstein SC, El Khoury J (2000) Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 191(1):147–156

    Article  PubMed  CAS  Google Scholar 

  • Tino MJ, Wright JR (1996) Surfactant protein A stimulates phagocytosis of specific pulmonary pathogens by alveolar macrophages. Am J Physiol 270(4 pt 1):L677–L688

    PubMed  CAS  Google Scholar 

  • Tridandapani S, Wardrop R, Baran CP, Wang Y, Opalek JM, Caligiuri MA et al (2003) TGF-beta 1 suppresses [correction of supresses] myeloid Fc gamma receptor function by regulating the expression and function of the common gamma-subunit. J Immunol 170(9):4572–4577

    PubMed  CAS  Google Scholar 

  • Tsai WC, Strieter RM, Zisman DA, Wilkowski JM, Bucknell KA, Chen GH et al (1997) Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect Immun 65(5):1870–1875

    PubMed  CAS  Google Scholar 

  • Tsay TB, Chang CJ, Chen PH, Hsu CM, Chen LW (2009) Nod2 mutation enhances NF-kappa B activity and bacterial killing activity of macrophages. Inflammation 32(6):372–378

    Article  PubMed  CAS  Google Scholar 

  • Ueno M, Maeno T, Nomura M, Aoyagi-Ikeda K, Matsui H, Hara K et al (2011) Hypoxia-inducible factor-1alpha mediates TGF-beta-induced PAI-1 production in alveolar macrophages in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 300(5):L740–L752

    Article  PubMed  CAS  Google Scholar 

  • van Haarst JM, Hoogsteden HC, de Wit HJ, Verhoeven GT, Havenith CE, Drexhage HA (1994) Dendritic cells and their precursors isolated from human bronchoalveolar lavage: immunocytologic and functional properties. Am J Respir Cell Mol Biol 11(3):344–350

    PubMed  Google Scholar 

  • van oud Alblas AB, van Furth R (1979) Origin, kinetics, and characteristics of pulmonary macrophages in the normal steady state. J Exp Med 149(6):1504–1518

    Article  PubMed  CAS  Google Scholar 

  • Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Botto M et al (2002a) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169(7):3978–3986

    PubMed  CAS  Google Scholar 

  • Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK et al (2002b) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109(5):661–670

    PubMed  CAS  Google Scholar 

  • Verbrugh HA, Hoidal JR, Nguyen BY, Verhoef J, Quie PG, Peterson PK (1982) Human alveolar macrophage cytophilic immunoglobulin G-mediated phagocytosis of protein A-positive staphylococci. J Clin Invest 69(1):63–74

    Article  PubMed  CAS  Google Scholar 

  • Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E et al (2004) Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 101(13):4560–4565

    Article  PubMed  CAS  Google Scholar 

  • Viksman MY, Liu MC, Bickel CA, Schleimer RP, Bochner BS (1997) Phenotypic analysis of alveolar macrophages and monocytes in allergic airway inflammation: I. Evidence for activation of alveolar macrophages, but not peripheral blood monocytes, in subjects with allergic rhinitis and asthma. Am J Respir Crit Care Med 155(3):858–863

    PubMed  CAS  Google Scholar 

  • Watanabe I, Ichiki M, Shiratsuchi A, Nakanishi Y (2007) TLR2-mediated survival of Staphylococcus aureus in macrophages: a novel bacterial strategy against host innate immunity. J Immunol 178(8):4917–4925

    PubMed  CAS  Google Scholar 

  • Weinberger DM, Trzcinski K, Lu YJ, Bogaert D, Brandes A, Galagan J et al (2009) Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog 5(6):e1000476

    Article  PubMed  CAS  Google Scholar 

  • West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344):476–480

    Article  PubMed  CAS  Google Scholar 

  • Wewers MD, Rennard SI, Hance AJ, Bitterman PB, Crystal RG (1984) Normal human alveolar macrophages obtained by bronchoalveolar lavage have a limited capacity to release interleukin-1. J Clin Invest 74(6):2208–2218

    Article  PubMed  CAS  Google Scholar 

  • Wieland CW, Florquin S, Maris NA, Hoebe K, Beutler B, Takeda K et al (2005) The MyD88-dependent, but not the MyD88-independent, pathway of TLR4 signaling is important in clearing nontypeable haemophilus influenzae from the mouse lung. J Immunol 175(9):6042–6049

    PubMed  CAS  Google Scholar 

  • Wiken M, Idali F, Al Hayja MA, Grunewald J, Eklund A, Wahlstrom J (2010) No evidence of altered alveolar macrophage polarization, but reduced expression of TLR2, in bronchoalveolar lavage cells in sarcoidosis. Respir Res 11:121

    Article  PubMed  CAS  Google Scholar 

  • Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C et al (2011) The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol 187(1):434–440

    Article  PubMed  CAS  Google Scholar 

  • Wretlind B, Pavlovskis OR (1983) Pseudomonas aeruginosa elastase and its role in pseudomonas infections. Rev Infect Dis 5(suppl 5):S998–S1004

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Droemann D, Rupp J, Shen H, Wu X, Goldmann T et al (2008) Modulation of the inflammatory response to Streptococcus pneumoniae in a model of acute lung tissue infection. Am J Respir Cell Mol Biol 39(5):522–529

    Article  PubMed  CAS  Google Scholar 

  • Yokota Y, Wakai Y, Mine Y, Goto S, Nishida M, Kuwahara S (1988) Degradation of host defenses against respiratory tract infection by Klebsiella pneumoniae in aged mice. Infect Immun 56(4):966–971

    PubMed  CAS  Google Scholar 

  • Zaborina O, Dhiman N, Ling Chen M, Kostal J, Holder IA, Chakrabarty AM (2000) Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. Microbiology 146(pt 10):2521–2530

    PubMed  CAS  Google Scholar 

  • Zaslona Z, Wilhelm J, Cakarova L, Marsh LM, Seeger W, Lohmeyer J et al (2009) Transcriptome profiling of primary murine monocytes, lung macrophages and lung dendritic cells reveals a distinct expression of genes involved in cell trafficking. Respir Res 10:2

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Clarke TB, Weiser JN (2009) Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest 119(7):1899–1909

    PubMed  CAS  Google Scholar 

  • Zhang Y, Li X, Grassme H, Doring G, Gulbins E (2010) Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J Immunol 184(9):5104–5111

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li X, Carpinteiro A, Goettel JA, Soddemann M, Gulbins E (2011) Kinase suppressor of Ras-1 protects against pulmonary Pseudomonas aeruginosa infections. Nat Med 17(3):341–346

    Article  PubMed  CAS  Google Scholar 

  • Zhao A, Urban JF Jr, Anthony RM, Sun R, Stiltz J, van Rooijen N et al (2008) Th2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages. Gastroenterology 135(1):217–225.e1

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, He M, Long M, Blomgran R, Stendahl O (2004) Pathogen-induced apoptotic neutrophils express heat shock proteins and elicit activation of human macrophages. J Immunol 173(10):6319–6326

    PubMed  CAS  Google Scholar 

  • Zhou H, Kobzik L (2007) Effect of concentrated ambient particles on macrophage phagocytosis and killing of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 36(4):460–465

    Article  PubMed  CAS  Google Scholar 

  • Zivkovic A, Sharif O, Stich K, Doninger B, Biaggio M, Colinge J et al (2011) TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo. J Immunol 186(3):1608–1617

    Article  PubMed  CAS  Google Scholar 

  • Zola TA, Lysenko ES, Weiser JN (2008) Mucosal clearance of capsule-expressing bacteria requires both TLR and nucleotide-binding oligomerization domain 1 signaling. J Immunol 181(11):7909–7916

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Dockrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dockrell, D.H., Collini, P.J., Marriott, H.M. (2013). Alveolar Macrophages. In: Prince, A. (eds) Mucosal Immunology of Acute Bacterial Pneumonia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5326-0_1

Download citation

Publish with us

Policies and ethics