Prion Protein Conversion and Lipids

  • Jiyan MaEmail author


The conversion of α-helical rich normal prion protein to a β-sheeted pathogenic isoform is central to the pathogenesis of prion disease. Recent studies have revealed the importance of cofactors in prion protein conformal change and in generating prion infectivity. Lipid appears to be a critical cofactor because of its unique biophysical properties and its ability to induce protein conformational changes. Biophysical and biochemical analyses of lipid–prion protein interactions and the resulting prion protein conformational changes revealed a huge impact of lipids on prion protein conformation. Studies of disease-associated mutations and the generation of highly infectious prions with bacterially expressed recombinant prion protein in the presence of lipid support the relevance of lipid interaction to prion disease. The hypothesized roles of lipid in prion protein conversion require rigorous future researches, which are essential for unveiling the molecular mechanism of prion infectivity.


Prion protein Prion protein conversion Lipids TSEs Prion infectivity 



Thanks to Xinhe Wang, Fei Wang, and Jessica Chadwick at Ohio State University for comments and thanks to Fei Wang for generating the images with PyMOL.


  1. Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477. doi:10.1146/annurev.neuro.31.060407.125620 PubMedCrossRefGoogle Scholar
  2. Alper T, Haig DA, Clarke MC (1978) The scrapie agent: evidence against its dependence for replication on intrinsic nucleic acid. J Gen Virol 41(3):503–516PubMedCrossRefGoogle Scholar
  3. Apetri AC, Surewicz WK (2003) Atypical effect of salts on the thermodynamic stability of human prion protein. J Biol Chem 278(25):22187–22192. doi:10.1074/jbc.M302130200M302130200[pii] PubMedCrossRefGoogle Scholar
  4. Apetri AC, Vanik DL, Surewicz WK (2005) Polymorphism at residue 129 modulates the conformational conversion of the D178N variant of human prion protein 90–231. Biochemistry 44(48):15880–15888. doi:10.1021/bi051455+ PubMedCrossRefGoogle Scholar
  5. Banuelos S, Muga A (1995) Binding of molten globule-like conformations to lipid bilayers Structure of native and partially folded alpha-lactalbumin bound to model membranes. J Biol Chem 270(50):29910–29915PubMedCrossRefGoogle Scholar
  6. Baron GS, Caughey B (2003) Effect of glycosylphosphatidylinositol anchor-dependent and -independent prion protein association with model raft membranes on conversion to the protease-resistant isoform. J Biol Chem 278(17):14883–14892PubMedCrossRefGoogle Scholar
  7. Baron GS, Magalhaes AC, Prado MA, Caughey B (2006) Mouse-adapted scrapie infection of SN56 cells: greater efficiency with microsome-associated versus purified PrP-res. J Virol 80(5):2106–2117PubMedCrossRefGoogle Scholar
  8. Baskakov IV, Legname G, Prusiner SB, Cohen FE (2001) Folding of prion protein to its native alpha-helical conformation is under kinetic control. J Biol Chem 276(23):19687–19690PubMedCrossRefGoogle Scholar
  9. Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375(6533):698–700. doi:10.1038/375698a0 PubMedCrossRefGoogle Scholar
  10. Bocharova OV, Breydo L, Parfenov AS, Salnikov VV, Baskakov IV (2005) In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J Mol Biol 346(2):645–659PubMedCrossRefGoogle Scholar
  11. Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267(23):16188–16199PubMedGoogle Scholar
  12. Brugger B, Graham C, Leibrecht I, Mombelli E, Jen A, Wieland F, Morris R (2004) The membrane domains occupied by glycosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition. J Biol Chem 279(9):7530–7536. doi:10.1074/jbc.M310207200M310207200[pii] PubMedCrossRefGoogle Scholar
  13. Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121(2):195–206PubMedCrossRefGoogle Scholar
  14. Caughey B, Raymond GJ (1991) The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem 266(27):18217–18223PubMedGoogle Scholar
  15. Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Secondary structure analysis of the scrapie-associated protein PrP 27–30 in water by infrared spectroscopy. Biochemistry 30(31):7672–7680PubMedCrossRefGoogle Scholar
  16. Caughey B, Baron GS, Chesebro B, Jeffrey M (2009) Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem 78:177–204. doi:10.1146/annurev.biochem.78.082907.145410 PubMedCrossRefGoogle Scholar
  17. Colby DW, Wain R, Baskakov IV, Legname G, Palmer CG, Nguyen HO, Lemus A, Cohen FE, DeArmond SJ, Prusiner SB (2010) Protease-sensitive synthetic prions. PLoS Pathog 6(1):e1000736. doi:10.1371/journal.ppat.1000736 PubMedCrossRefGoogle Scholar
  18. Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550PubMedCrossRefGoogle Scholar
  19. Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318(5852):930–936PubMedCrossRefGoogle Scholar
  20. Critchley P, Kazlauskaite J, Eason R, Pinheiro TJ (2004) Binding of prion proteins to lipid membranes. Biochem Biophys Res Commun 313(3):559–567PubMedCrossRefGoogle Scholar
  21. Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425(6959):717–720PubMedCrossRefGoogle Scholar
  22. Deleault NR, Geoghegan JC, Nishina K, Kascsak R, Williamson RA, Supattapone S (2005) Protease-resistant prion protein amplification reconstituted with partially purified substrates and synthetic polyanions. J Biol Chem 280(29):26873–26879PubMedCrossRefGoogle Scholar
  23. Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA 104(23):9741–9746PubMedCrossRefGoogle Scholar
  24. Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, Prusiner SB, Wright PE, Dyson HJ (1997) Structure of the recombinant full-length hamster prion protein PrP(29–231): the N terminus is highly flexible. Proc Natl Acad Sci USA 94(25):13452–13457PubMedCrossRefGoogle Scholar
  25. Fisher CA, Ryan RO (1999) Lipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E. J Lipid Res 40(1):93–99PubMedGoogle Scholar
  26. Gabizon R, McKinley MP, Prusiner SB (1987) Purified prion proteins and scrapie infectivity copartition into liposomes. Proc Natl Acad Sci USA 84(12):4017–4021PubMedCrossRefGoogle Scholar
  27. Gasset M, Baldwin MA, Fletterick RJ, Prusiner SB (1993) Perturbation of the secondary structure of the scrapie prion protein under conditions that alter infectivity. Proc Natl Acad Sci USA 90(1):1–5PubMedCrossRefGoogle Scholar
  28. Ironside JW, Ritchie DL, Head MW (2005) Phenotypic variability in human prion diseases. Neuropathol Appl Neurobiol 31(6):565–579. doi:NAN697[pii]10.1111/j.1365-2990.2005.00697.x PubMedCrossRefGoogle Scholar
  29. Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283(5409):1935–1937PubMedCrossRefGoogle Scholar
  30. Kim JI, Cali I, Surewicz K, Kong Q, Raymond GJ, Atarashi R, Race B, Qing L, Gambetti P, Caughey B, Surewicz WK (2010) Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J Biol Chem 285(19):14083–14087. doi:C110.113464[pii]10.1074/jbc.C110.113464 PubMedCrossRefGoogle Scholar
  31. Klein TR, Kirsch D, Kaufmann R, Riesner D (1998) Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol Chem 379(6):655–666PubMedCrossRefGoogle Scholar
  32. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370(6489):471–474PubMedCrossRefGoogle Scholar
  33. Leffers KW, Wille H, Stohr J, Junger E, Prusiner SB, Riesner D (2005) Assembly of natural and recombinant prion protein into fibrils. Biol Chem 386(6):569–580PubMedCrossRefGoogle Scholar
  34. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305(5684):673–676PubMedCrossRefGoogle Scholar
  35. Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H, Rohwer RG, Baskakov IV (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119(2):177–187. doi:10.1007/s00401-009-0633-x PubMedCrossRefGoogle Scholar
  36. Morillas M, Swietnicki W, Gambetti P, Surewicz WK (1999) Membrane environment alters the conformational structure of the recombinant human prion protein. J Biol Chem 274(52):36859–36865PubMedCrossRefGoogle Scholar
  37. Muga A, Gonzalez-Manas JM, Lakey JH, Pattus F, Surewicz WK (1993) pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J Biol Chem 268(3):1553–1557PubMedGoogle Scholar
  38. Naslavsky N, Shmeeda H, Friedlander G, Yanai A, Futerman AH, Barenholz Y, Taraboulos A (1999) Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J Biol Chem 274(30):20763–20771PubMedCrossRefGoogle Scholar
  39. Pinheiro TJ, Watts A (1994) Lipid specificity in the interaction of cytochrome c with anionic phospholipid bilayers revealed by solid-state 31P NMR. Biochemistry 33(9):2451–2458PubMedCrossRefGoogle Scholar
  40. Piro JR, Wang F, Walsh DJ, Rees JR, Ma J, Supattapone S (2011) Seeding specificity and ultrastructural characteristics of infectious recombinant prions. Biochemistry 50(33):7111–7116PubMedCrossRefGoogle Scholar
  41. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144PubMedCrossRefGoogle Scholar
  42. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383PubMedCrossRefGoogle Scholar
  43. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–321). Nature 382(6587):180–182PubMedCrossRefGoogle Scholar
  44. Riek R, Hornemann S, Wider G, Glockshuber R, Wuthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett 413(2):282–288PubMedCrossRefGoogle Scholar
  45. Sanghera N, Pinheiro TJ (2002) Binding of prion protein to lipid membranes and implications for prion conversion. J Mol Biol 315(5):1241–1256PubMedCrossRefGoogle Scholar
  46. Sarnataro D, Campana V, Paladino S, Stornaiuolo M, Nitsch L, Zurzolo C (2004) PrP(C) association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol Biol Cell 15(9):4031–4042PubMedCrossRefGoogle Scholar
  47. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437(7056):257–261PubMedCrossRefGoogle Scholar
  48. Smirnovas V, Baron GS, Offerdahl DK, Raymond GJ, Caughey B, Surewicz WK (2011) Structural organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange. Nat Struct Mol Biol 18(4):504–506. doi:nsmb.2035[pii]10.1038/nsmb.2035 PubMedCrossRefGoogle Scholar
  49. Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, Prusiner SB (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129(1):121–132PubMedCrossRefGoogle Scholar
  50. van der Goot FG, Gonzalez-Manas JM, Lakey JH, Pattus F (1991) A “molten-globule” membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 354(6352):408–410. doi:10.1038/354408a0 PubMedCrossRefGoogle Scholar
  51. Wang F, Yang F, Hu Y, Wang X, Jin C, Ma J (2007) Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions. Biochemistry 46(23):7045–7053PubMedCrossRefGoogle Scholar
  52. Wang F, Yin S, Wang X, Zha L, Sy MS, Ma J (2010a) Role of the highly conserved middle region of prion protein (PrP) in PrP-lipid interaction. Biochemistry 49(37):8169–8176. doi:10.1021/bi101146v PubMedCrossRefGoogle Scholar
  53. Wang F, Wang X, Yuan CG, Ma J (2010b) Generating a prion with bacterially expressed ­recombinant prion protein. Science 327(5969):1132–1135. doi:science.1183748[pii]10.1126/science.1183748 PubMedCrossRefGoogle Scholar
  54. Weissmann C (2004) The state of the prion. Nat Rev Microbiol 2(11):861–871PubMedCrossRefGoogle Scholar
  55. White SH, Ladokhin AS, Jayasinghe S, Hristova K (2001) How membranes shape protein structure. J Biol Chem 276(35):32395–32398PubMedCrossRefGoogle Scholar
  56. Wimley WC, Hristova K, Ladokhin AS, Silvestro L, Axelsen PH, White SH (1998) Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. J Mol Biol 277(5):1091–1110PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryOhio State UniversityColumbusUSA

Personalised recommendations