Skip to main content

Yeast Prions Are Pathogenic, In-Register Parallel Amyloids

  • Chapter
  • First Online:
Prions and Diseases

Abstract

Most yeast prions are self-propagating amyloids of normally non-amyloid proteins. The prion domains of Ure2p, Sup35p, and Rnq1p each form highly infectious in-register parallel β-sheet amyloids. This architecture can explain perhaps the most mysterious prion phenomenon: the stable propagation of any of several prion variants (“strains”) by a single amino acid sequence. We have thus proposed a detailed model for the mechanism of templating of protein conformation by amyloid filaments. The yeast prions [URE3] and [PSI+] are diseases of yeast, with different variants differing in the degree to which they deter cell growth or viability, but even the most mild forms not being found in wild strains. Sequence conservation of the prion domains reflects the important non-prion function of these domains, not conservation of prion-forming ability, which does not require sequence conservation and is, in fact, not conserved. Upon infection with a prion, cells undergo induction of Hsp70s and Hsp104, indicative of a stress response: the cells know that prion infection is not a good thing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci USA 97:13045–13050

    Article  PubMed  CAS  Google Scholar 

  • Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R (2000) Amyloid fibril formation by A beta 16–22, a seven-residue fragment of the Alzheimer’s beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–13759

    Article  PubMed  CAS  Google Scholar 

  • Baudin-Baillieu A, Fernandez-Bellot E, Reine F, Coissac E, Cullin C (2003) Conservation of the prion properties of Ure2p through evolution. Mol Biol Cell 14:3449–3458

    Article  PubMed  CAS  Google Scholar 

  • Baxa U, Taylor KL, Wall JS, Simon MN, Cheng N, Wickner RB, Steven A (2003) Architecture of Ure2p prion filaments: the N-terminal domain forms a central core fiber. J Biol Chem 278:43717–43727

    Article  PubMed  CAS  Google Scholar 

  • Baxa U, Cheng N, Winkler DC, Chiu TK, Davies DR, Sharma D, Inouye H, Kirschner DA, Wickner RB, Steven AC (2005) Filaments of the Ure2p prion protein have a cross-beta core structure. J Struct Biol 150:170–179

    Article  PubMed  CAS  Google Scholar 

  • Baxa U, Wickner RB, Steven AC, Anderson D, Marekov L, Yau W-M, Tycko R (2007) Characterization of β-sheet structure in Ure2p1-89 yeast prion fibrils by solid state nuclear magnetic resonance. Biochemistry 46:13149–13162

    Article  PubMed  CAS  Google Scholar 

  • Benzinger TL, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC (1998) Propagating structure of Alzheimer’s beta-amyloid(10–35) is parallel beta-sheet with residues in exact register. Proc Natl Acad Sci USA 95:13407–13412

    Article  PubMed  CAS  Google Scholar 

  • Bessen RA, Marsh RF (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66:2096–2101

    PubMed  CAS  Google Scholar 

  • Bousset L, Thomson NH, Radford SE, Melki R (2002) The yeast prion Ure2p retains its native α-helical conformation upon assembly into protein fibrils in vitro. EMBO J 21:2903–2911

    Article  PubMed  CAS  Google Scholar 

  • Bousset L, Briki F, Doucet J, Melki R (2003) The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils. J Struct Biol 141:132–140

    Article  PubMed  CAS  Google Scholar 

  • Brachmann A, Baxa U, Wickner RB (2005) Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J 24:3082–3092

    Article  PubMed  CAS  Google Scholar 

  • Bradley ME, Liebman SW (2004) The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions. Mol Microbiol 51:1649–1659

    Article  PubMed  CAS  Google Scholar 

  • Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW (2002) Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci USA 99(Suppl 4):16392–16399

    Article  PubMed  CAS  Google Scholar 

  • Bruce ME (2003) TSE strain variation: an investigation into prion disease diversity. Br Med Bull 66:99–108

    Article  PubMed  CAS  Google Scholar 

  • Caughey B, Raymond GJ, Bessen RA (1998) Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem 273:32230–32235

    Article  PubMed  CAS  Google Scholar 

  • Chang H-Y, Lin J-Y, Lee H-C, Wang H-L, King C-Y (2008) Strain-specific sequences required for yeast prion [PSI+] propagation. Proc Natl Acad Sci USA 105:13345–13350

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Newnam GP, Chernoff YO (2007) Prion species barrier between the closely related yeast proteins is detected despite coaggregation. Proc Natl Acad Sci USA 104:2791–2796

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Thurber KR, Shewmaker F, Wickner RB, Tycko R (2009) Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc Natl Acad Sci USA 106:14339–14344

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability and toxicity of the [PSI+] prion. Mol Cell Biol 19:8103–8112

    PubMed  CAS  Google Scholar 

  • Chernoff YO, Galkin AP, Lewitin E, Chernova TA, Newnam GP, Belenkiy SM (2000) Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 35:865–876

    Article  PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein folding, functional amyloid and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  • Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2:1582–1590

    Article  CAS  Google Scholar 

  • Courchesne WE, Magasanik B (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol 170:708–713

    PubMed  CAS  Google Scholar 

  • Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778

    Article  PubMed  CAS  Google Scholar 

  • Dalstra HJP, Swart K, Debets AJM, Saupe SJ, Hoekstra RF (2003) Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina. Proc Natl Acad Sci USA 100:6616–6621

    Article  PubMed  CAS  Google Scholar 

  • Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386

    PubMed  CAS  Google Scholar 

  • Diaz-Avalos R, King CY, Wall JS, Simon M, Caspar DLD (2005) Strain-specific morphologies of yeast prion amyloids. Proc Natl Acad Sci USA 102:10165–10170

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Castro CE, Boyce MC, Lang MJ, Lindquist S (2010) Optical trapping with high forces reveals unexpected behaviors of prion fibrils. Nat Struct Mol Biol 17:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Drillien R, Aigle M, Lacroute F (1973) Yeast mutants pleiotropically impaired in the regulation of the two glutamate dehydrogenases. Biochem Biophys Res Comm 53:367–372

    Article  PubMed  CAS  Google Scholar 

  • Eaglestone SS, Cox BS, Tuite MF (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18:1974–1981

    Article  PubMed  CAS  Google Scholar 

  • Edskes HK, Wickner RB (2002) Conservation of a portion of the S. cerevisiae Ure2p prion domain that interacts with the full - length protein. Proc Natl Acad Sci USA 99(Suppl 4):16384–16391

    Article  PubMed  CAS  Google Scholar 

  • Edskes HK, McCann LM, Hebert AM, Wickner RB (2009) Prion variants and species barriers among Saccharomyces Ure2 proteins. Genetics 181:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Edskes HK, Engel A, McCann LM, Brachmann A, Tsai H-F, Wickner RB (2011) Prion-forming ability of Ure2 of yeasts is not evolutionarily conserved. Genetics 188:81–90

    Article  PubMed  CAS  Google Scholar 

  • Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I, Tsujimoto M, Suzuki T, Katada T, Hoshino S (2007) Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev 21:3135–3148

    Article  PubMed  CAS  Google Scholar 

  • Gangaraju VK, Yin H, Weiner MM, Wang J, Huang XA, Lin H (2011) Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nat Genet 43:153–158

    Article  PubMed  CAS  Google Scholar 

  • Glover JR, Kowal AS, Shirmer EC, Patino MM, Liu J-J, Lindquist S (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811–819

    Article  PubMed  CAS  Google Scholar 

  • Harrison LB, Yu Z, Stajich JE, Dietrich FS, Harrison PM (2007) Evolution of budding yeast prion-determinant sequences across diverse fungi. J Mol Biol 368:273–282

    Article  PubMed  CAS  Google Scholar 

  • Hoshino S, Imai M, Kobayashi T, Uchida N, Katada T (1999) The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3’-poly(A) tail of mRNA. J Biol Chem 274:16677–16680

    Article  PubMed  CAS  Google Scholar 

  • Hosoda N, Kobayashii T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T (2003) Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem 278:38287–38291

    Article  PubMed  CAS  Google Scholar 

  • Jung G, Jones G, Wegrzyn RD, Masison DC (2000) A role for cytosolic Hsp70 in yeast [PSI+] prion propagation and [PSI+] as a cellular stress. Genetics 156:559–570

    PubMed  CAS  Google Scholar 

  • King CY (2001) Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J Mol Biol 307:1247–1260

    Article  PubMed  CAS  Google Scholar 

  • King CY, Diaz-Avalos R (2004) Protein-only transmission of three yeast prion strains. Nature 428:319–323

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Funakoshi Y, Hoshino S, Katada T (2004) The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J Biol Chem 279:45693–45700

    Article  PubMed  CAS  Google Scholar 

  • Krishnan R, Lindquist S (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435:765–772

    Article  PubMed  CAS  Google Scholar 

  • Kryndushkin DS, Wickner RB, Tycko R (2011) The core of Ure2p prion fibrils is formed by the N-terminal segment in a parallel cross-β structure: evidence from solid-state NMR. J Mol Biol 409:263–277

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov VV, Ter-Avanesyan MD, Didichenko SA, Smirnov VN, Chernoff YO, Derkach IL, Novikova ON, Inge-Vechtomov SG, Neistat MA, Tolstorukov II (1990) Divergence and conservation of SUP2 (SUP35) gene of yeasts Pichia pinus and Saccharomyces cerevisiae. Yeast 6:461–472

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov VV, Kochneva-Pervukhova NV, Cechenova MB, Frolova NS, Ter-Avanesyan MD (2000a) Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J 19:324–331

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov VV, Kryndushkin D, Boguta M, Smirnov VN, Ter-Avanesyan MD (2000b) Chaperones that cure yeast artificial [PSI +] and their prion-specific effects. Curr Biol 10:1443–1446

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Lindquist S (1999) Oligopeptide-repeat expansions modulate “protein-only” inheritance in yeast. Nature 400:573–576

    Article  PubMed  CAS  Google Scholar 

  • Loquet A, Bousset L, Gardiennet C, Sourigues Y, Wasmer C, Habenstein B, Schutz A, Meier BH, Melki R (2009) Prion fibrils of Ure2p assembled under physiological conditions contain highly ordered, natively folded molecules. J Mol Biol 394:108–118

    Article  PubMed  CAS  Google Scholar 

  • Masison DC, Wickner RB (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93–95

    Article  PubMed  CAS  Google Scholar 

  • Masison DC, Maddelein M-L, Wickner RB (1997) The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc Natl Acad Sci USA 94:12503–12508

    Article  PubMed  CAS  Google Scholar 

  • McGlinchey R, Kryndushkin D, Wickner RB (2011) Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci USA 108:5337–5341

    Article  PubMed  CAS  Google Scholar 

  • Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB (2005) Yeast prions [URE3] and [PSI +] are diseases. Proc Natl Acad Sci USA 102:10575–10580

    Article  PubMed  CAS  Google Scholar 

  • Namy O, Galopier A, Martini C, Matsufuji S, Fabret C, Rousset C (2008) Epigenetic control of polyamines by the prion [PSI +]. Nat Cell Biol 10:1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Ngo S, Gu L, Guo Z (2011) Hierarchical organization in the amyloid core of yeast prion protein Ure2. J Biol Chem 286(34):29691–29699

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91:5355–5358

    Article  PubMed  CAS  Google Scholar 

  • Pierce MM, Baxa U, Steven AC, Bax A, Wickner RB (2005) Is the prion domain of soluble Ure2p unstructured? Biochemistry 44:321–328

    Article  PubMed  CAS  Google Scholar 

  • Resende CG, Outeiro TF, Sands L, Lindquist S, Tuite MF (2003) Prion protein gene polymorphisms in Saccharomyces cerevisiae. Mol Microbiol 49:1005–1017

    Article  PubMed  CAS  Google Scholar 

  • Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    Article  PubMed  CAS  Google Scholar 

  • Ross ED, Baxa U, Wickner RB (2004) Scrambled prion domains form prions and amyloid. Mol Cell Biol 24:7206–7213

    Article  PubMed  CAS  Google Scholar 

  • Ross ED, Edskes HK, Terry MJ, Wickner RB (2005a) Primary sequence independence for prion formation. Proc Natl Acad Sci USA 102:12825–12830

    Article  PubMed  CAS  Google Scholar 

  • Ross ED, Minton AP, Wickner RB (2005b) Prion domains: sequences, structures and interactions. Nat Cell Biol 7:1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphologic evolution. Nature 396:336–342

    Article  PubMed  CAS  Google Scholar 

  • Safadi RA, Talarek N, Jacques N, Aigle M (2011) Yeast prions: could they be exaptations? The URE2/[URE3] system in Kluyveromyces lactis. FEMS Yeast Res 11:151–153

    Article  PubMed  Google Scholar 

  • Santoso A, Chien P, Osherovich LZ, Weissman JS (2000) Molecular basis of a yeast prion species barrier. Cell 100:277–288

    Article  PubMed  CAS  Google Scholar 

  • Saupe SJ (2000) Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 64:489–502

    Article  PubMed  CAS  Google Scholar 

  • Saupe SJ (2007) A short history of small s: a prion of the fungus Podospora anserina. Prion 1:110–115

    Article  PubMed  Google Scholar 

  • Schlumpberger M, Prusiner SB, Herskowitz I (2001) Induction of distinct [URE3] yeast prion strains. Mol Cell Biol 21:7035–7046

    Article  PubMed  CAS  Google Scholar 

  • Schwimmer C, Masison DC (2002) Antagonistic interactions between yeast [PSI+] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol Cell Biol 22:3590–3598

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc Natl Acad Sci USA 103:19754–19759

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker F, Mull L, Nakayashiki T, Masison DC, Wickner RB (2007) Ure2p function is enhanced by its prion domain in Saccharomyces cerevisiae. Genetics 176:1557–1565

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker F, Ross ED, Tycko R, Wickner RB (2008) Amyloids of shuffled prion domains that form prions have a parallel in-register β-sheet structure. Biochemistry 47:4000–4007

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker F, Kryndushkin D, Chen B, Tycko R, Wickner RB (2009) Two prion variants of Sup35p have in-register β-sheet structures, independent of hydration. Biochemistry 48:5074–5082

    Article  PubMed  CAS  Google Scholar 

  • Shkundina IS, Kushnirov VV, Tuite MF, Ter-Avanesyan MD (2006) The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants. Genetics 172:827–835

    Article  PubMed  CAS  Google Scholar 

  • Shorter J, Lindquist S (2005) Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 6:435–450

    Article  PubMed  CAS  Google Scholar 

  • Siemer AB, Arnold AA, Ritter C, Westfeld T, Ernst M, Riek R, Meier BH (2006a) Observation of highly flexible residues in amyloid fibrils of the HET-s prion. J Am Chem Soc 128:13224–13228

    Article  PubMed  CAS  Google Scholar 

  • Siemer AB, Ritter C, Steinmetz MO, Ernst M, Riek R, Meier BH (2006b) 13C, 15N resonance assignment of parts of the HET-s prion protein in its amyloid form. J Biomol NMR 34:75–87

    Article  PubMed  CAS  Google Scholar 

  • Sniegowski PD, Gerrish PJ, Johnson T, Shaver A (2000) The evolution of mutation rates: separating causes from consequences. Bioessays 22:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Specchia V, Piacentini L, Tritto P, Fanti L, D’Alessandro R, Palumbo G, Pimpinelli S, Bozzetti MP (2010) Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–665

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Chien P, Naber N, Cooke R, Weissman JS (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428:323–328

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Collins SR, Toyama BH, Weissman JS (2006) The physical basis of how prion conformations determine strain phenotypes. Nature 442:585–589

    Article  PubMed  CAS  Google Scholar 

  • Taylor KL, Cheng N, Williams RW, Steven AC, Wickner RB (1999) Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283:1339–1343

    Article  PubMed  CAS  Google Scholar 

  • Toombs JA, McCarty BR, Ross ED (2010) Compositional determinants of prion formation in yeast. Mol Cell Biol 30:319–332

    Article  PubMed  CAS  Google Scholar 

  • Toombs JA, Liss NM, Cobble KR, Ben-Musa Z, Ross ED (2011) [PSI] maintenance is dependent on the composition, not the primary sequence, of the oligopeptide repeat domain. PLoS One 6:e21953

    Article  PubMed  CAS  Google Scholar 

  • Toyama BH, Kelly MJ, Gross JD, Weissman JS (2007) The structural basis of yeast prion strain variants. Nature 449:233–237

    Article  PubMed  CAS  Google Scholar 

  • True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483

    Article  PubMed  CAS  Google Scholar 

  • Tyedmers J, Madariaga ML, Lindquist S (2008) Prion switching in response to environmental stress. PLoS Biol 6:e294

    Article  PubMed  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–279) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in S. cerevisiae. Science 264:566–569

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB (1997) A new prion controls fungal cell fusion incompatibility. Proc Natl Acad Sci USA 94:10012–10014

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T (2007) Prions of fungi: inherited structures and biological roles. Nat Rev Microbiol 5:611–618

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Dyda F, Tycko R (2008a) Amyloid of Rnq1p, the basis of the [PIN +] prion, has a parallel in-register β-sheet structure. Proc Natl Acad Sci USA 105:2403–2408

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Shewmaker F, Kryndushkin D, Edskes HK (2008b) Protein inheritance (prions) based on parallel in-register β-sheet amyloid structures. Bioessays 30:955–964

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Shewmaker F, Edskes H, Kryndushkin D, Nemecek J, McGlinchey R, Bateman D, Winchester C-L (2010) Prion amyloid structure explains templating: how proteins can be genes. FEMS Yeast Res 10:980–991

    Article  PubMed  CAS  Google Scholar 

  • Williams ES (2005) Chronic wasting disease. Vet Pathol 42:530–549

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Intramural Program of the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reed B. Wickner M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wickner, R.B., Edskes, H.K., Bateman, D.A., Kelly, A.C., Gorkovskiy, A. (2013). Yeast Prions Are Pathogenic, In-Register Parallel Amyloids. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5305-5_16

Download citation

Publish with us

Policies and ethics