Advertisement

Hilbert–Kunz Multiplicity and the F-Signature

  • Craig Huneke
Chapter

Abstract

This paper is a much expanded version of two talks given in Ann Arbor in May of 2012 during the computational workshop on F-singularities. We survey some of the theory and results concerning the Hilbert-Kunz multiplicity and F-signature of positive characteristic local rings.

Keywords

Primary Ideal Local Ring Residue Field Koszul Complex Regular Local Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author was partially supported by NSF grant DMS-1063538. I thank them for their support.

References

  1. 1.
    Aberbach, I.M.: Extensions of weakly and strongly F-rational rings by flat maps. J. Algebra 241, 799–807 (2001)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Aberbach, I.M.: The existence of the F-signature for rings with large Q-Gorenstein locus. J. Algebra 319, 2994–3005 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aberbach, I.M., Leuschke, G.: The F-signature and strong F-regularity. Math. Res. Lett. 10, 51–56 (2003)MathSciNetMATHGoogle Scholar
  4. 4.
    Aberbach, I.M., Enescu, F.: The structure of F-pure rings. Math. Z. 250, 791–806 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aberbach, I.M., Enescu, F.: When does the F-signature exist? Ann. Fac. Sci. Toulouse Math. 15, 195–201 (2006)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Aberbach, I.M., Enescu, F.: Lower bounds for the Hilbert–Kunz multiplicities in local rings of fixed dimension. Michigan Math. J. 57, 1–16 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Aberbach, I.M., Enescu, F.: New estimates of Hilbert–Kunz multiplicities for local rings of fixed dimension.Google Scholar
  8. 8.
    Blickle, M., Enescu, F.: On rings with small Hilbert–Kunz multiplicity. Proc. Amer. Math. Soc. 132, 2505–2509 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Blickle, M., Schwede, K., Tucker, K.: F-signature of pairs and the asymptotic behavior of Frobenius splittings. Adv. Math. 231, 3232–3258 (2012)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Blickle, M., Schwede, K., Tucker, K.: F-signature of pairs: Continuity, p-fractals and minimal log discrepancies. arXiv:1111.2762Google Scholar
  11. 11.
    Brenner, H.: A linear bound for Frobenius powers and an inclusion bound for tight closure. Michigan Math. J. 53, 585–596 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Brenner, H.: The rationality of the Hilbert–Kunz multiplicity in graded dimension two. Math. Ann. 334, 91–110 (2006)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Brenner, H.: The Hilbert–Kunz function in graded dimension two. Comm. Algebra 35, 3199–3213 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Brenner, H., Li, J., Miller, C.: A direct limit for limit Hilbert–Kunz multiplicity for smooth projective curves. arXiv:1104.2662Google Scholar
  15. 15.
    Brenner, H., Monsky, P.: Tight closure does not commute with localization. Ann. Math. 171, 571–588 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Bruns, W., Herzog, J.: Cohen–Macaulay rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)Google Scholar
  17. 17.
    Buchweitz, R.-O., Chen, Q.: Hilbert–Kunz functions of cubic curves and surfaces. J. Algebra 197, 246–267 (1997)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Celikbas, O., Dao, H., Huneke, C., Zhang, Y.: Bounds on the Hilbert–Kunz multiplicity. Nagoya Math. J. 205, 149–165 (2012)MathSciNetMATHGoogle Scholar
  19. 19.
    Conca, A.: Hilbert–Kunz function of monomial ideals and binomial hypersurfaces. Manuscripta Math. 90, 287–300 (1996)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Dutta, S.: Frobenius and multiplicities. J. Algebra 85, 424–448 (1983)MATHCrossRefGoogle Scholar
  21. 21.
    Enescu, F., Shimomoto, K.: On the upper semi-continuity of the Hilbert–Kunz multiplicity. J. Algebra 285, 222–237 (2005)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Epstein, N., Yao, Y.: Some extensions of Hilbert–Kunz multiplicity. arXiv:1103.4730Google Scholar
  23. 23.
    Eto, K.: Multiplicity and Hilbert–Kunz multiplicity of monoid rings. Tokyo J. Math. 25, 241–245 (2002)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Eto, K., Yoshida, K.: Notes on Hilbert–Kunz multiplicity of Rees algebras. Comm. Algebra 31, 5943–5976 (2003)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Fakhruddin, N., Trivedi, V.: Hilbert–Kunz functions and multiplicities for full flag varieties and elliptic curves. J. Pure Appl. Algebra 181, 23–52 (2003)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Gessel, I., Monsky, P.: The limit as p→ infinity of the Hilbert–Kunz multiplicity of sum(\(x_{i}^{d_{i}}\)). arXiv:1007.2004Google Scholar
  27. 27.
    Goto, S., Nakamura, Y.: Multiplicity and tight closures of parameters. J. Algebra 244, 302–311 (2001)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Han, C., Monsky, P.: Some surprising Hilbert–Kunz functions. Math. Z. 214, 119–135 (1993)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Hanes, D.: Notes on the Hilbert–Kunz function. J. Algebra 265, 619–630 (2003)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Hochster, M., Roberts, J.: Rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay. Adv. Math. 13, 115–175 (1974)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Hochster, M., Huneke, C.: Tight closure, invariant theory and the Briançon–Skoda theorem. J. Amer. Math. Soc. 3, 31–116 (1990)MathSciNetMATHGoogle Scholar
  32. 32.
    Hochster, M., Huneke, C.: Phantom homology. Mem. Amer. Math. Soc. 103(490) (1993)Google Scholar
  33. 33.
    Hochster, M., Huneke, C.: F-regularity, test elements, and smooth base change. Trans. Amer. Math. Soc. 346, 1–62 (1994)MathSciNetMATHGoogle Scholar
  34. 34.
    Hochster, M., Yao, Y.: Second coefficients of Hilbert–Kunz functions for domains. PreprintGoogle Scholar
  35. 35.
    Huneke, C.: Tight closure and its applications. With an appendix by Melvin Hochster. CBMS Regional Conference Series in Mathematics, vol. 88 (1996)Google Scholar
  36. 36.
    Huneke, C., Leuschke, G.: Two theorems about maximal Cohen–Macaulay modules. Math. Ann. 324, 391–404 (2002)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Huneke, C., Yao, Y.: Unmixed local rings with minimal Hilbert–Kunz multiplicity are regular. Proc. Amer. Math. Soc. 130, 661–665 (2002)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Huneke, C., McDermott, M., Monsky, P.: Hilbert–Kunz functions for normal rings. Math. Res. Lett. 11, 539–546 (2004)MathSciNetMATHGoogle Scholar
  39. 39.
    Kreuzer, M.: Computing Hilbert–Kunz functions of 1-dimensional graded rings. Univ. Iagel. Acta Math. 45, 81–95 (2007)MathSciNetGoogle Scholar
  40. 40.
    Kunz, E.: Characterizations of regular local rings for characteristic p. Amer. J. Math. 91, 772–784 (1969)Google Scholar
  41. 41.
    Kunz, E.: On Noetherian rings of characteristic p. Amer. J. Math. 98, 999–1013 (1976)Google Scholar
  42. 42.
    Kurano, K.: On Roberts rings. J. Math. Soc. Japan 53, 333–355 (2001)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Kurano, K.: The singular Riemann–Roch theorem and Hilbert–Kunz functions. J. Algebra 304, 487–499 (2006)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Lyubeznik, G., Smith, K.E.: Strong and weak F-regularity are equivalent for graded rings. Amer. J. Math. 121, 1279–1290 (1999)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    McDonnell, L.: Hilbert–Samuel and Hilbert–Kunz functions of zero-dimensional ideals. Ph.D. Thesis, The University of Nebraska, Lincoln (2011)Google Scholar
  46. 46.
    Miller, L., Swanson, I.: Hilbert–Kunz functions of 2 ×2 determinantal rings. arXiv:1206.1015Google Scholar
  47. 47.
    Monsky, P.: The Hilbert–Kunz function. Math. Ann. 263, 43–49 (1983)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Monsky, P.: The Hilbert–Kunz function of a characteristic 2 cubic. J. Algebra 197, 268–277 (1997)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Monsky, P.: Hilbert–Kunz functions in a family: point-S 4 quartics. J. Algebra 208, 343–358 (1998)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Monsky, P.: Hilbert–Kunz functions in a family: line-S 4 quartics. J. Algebra 208, 359–371 (1998)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Monsky, P.: Hilbert–Kunz functions for irreducible plane curves. J. Algebra 316, 326–345 (2007)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Monsky, P.: Rationality of Hilbert–Kunz multiplicities: a likely counterexample. Special volume in honor of Melvin Hochster. Michigan Math. J. 57, 605–613 (2008)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Monsky, P.: Algebraicity of some Hilbert–Kunz multiplicities (modulo a conjecture). arXiv:0907.2470Google Scholar
  54. 54.
    Monsky, P.: Transcendence of some Hilbert–Kunz multiplicities (modulo a conjecture). arXiv:0908.0971Google Scholar
  55. 55.
    Monksy, P., Teixeira, P.: p-fractals and power series. I. Some 2 variable results. J. Algebra 280, 505–536 (2004)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Monsky, P., Teixeira, P.: p-fractals and power series. II. Some applications to Hilbert–Kunz theory. J. Algebra 304, 237–255 (2006)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Roberts, P.: Le théorème d’intersection. C. R. Acad. Sci. Paris Sér. I Math. 304, 177–180 (1987)MATHGoogle Scholar
  58. 58.
    Schwede, K., Tucker, K.: A survey of test ideals. Progress in Commutative Algebra 2, Closures, Finiteness and Factorization, pp. 39–99. Walter de Gruyter GmbH & Co. KG, Berlin (2012)Google Scholar
  59. 59.
    Seibert, G.: The Hilbert–Kunz function of rings of finite Cohen–Macaulay type. Arch. Math. 69, 286–296 (1997)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Shepherd-Barron, N.I.: On a problem of Ernst Kunz concerning certain characteristic functions of local rings. Arch. Math. (Basel) 31, 562–564 (1978/79)Google Scholar
  61. 61.
    Singh, A.K.: The F-signature of an affine semigroup ring. J. Pure Appl. Algebra 196, 313–321 (2005)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Smith, K.E., Van den Bergh, M.: Simplicity of rings of differential operators in prime characteristic. Proc. London Math. Soc. 75, 32–62 (1997)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. Cambridge University Press, Cambridge (2006)MATHGoogle Scholar
  64. 64.
    Teixeira, P.: Syzygy gap fractals I. Some structural results and an upper bound. J. Algebra 350, 132–162 (2012)MathSciNetMATHGoogle Scholar
  65. 65.
    Trivedi, V.: Semistability and Hilbert–Kunz multiplicities for curves. J. Algebra 284, 627–644 (2005)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Trivedi, V.: Strong semistability and Hilbert–Kunz multiplicity for singular plane curves. Commutative algebra and algebraic geometry, pp. 165–173. Contemporary Mathematics, vol. 390. American Mathematical Society, Providence (2005)Google Scholar
  67. 67.
    Trivedi, V.: Hilbert–Kunz multiplicity and reduction mod p. Nagoya Math. J. 185, 123–141 (2007)Google Scholar
  68. 68.
    Tucker, K.: F-signature exists. InventionesGoogle Scholar
  69. 69.
    Upadhyay, S.: The Hilbert–Kunz function for binomial hypersurfaces. arXiv:1101.5936Google Scholar
  70. 70.
    Von Korff, M.: F-Signature of affine toric varieties. arXiv:1110.0552Google Scholar
  71. 71.
    Vraciu, A.: Drops in joint Hilbert–Kunz multiplicities and projective equivalence of ideals. Preprint (2012)Google Scholar
  72. 72.
    Watanabe, K.-i.: Chains of integrally closed ideals. In: Commutative algebra (Grenoble/Lyon, 2001). Contemporary Mathematics, vol. 331, pp. 353–358. American Mathematical Society, Providence (2003)Google Scholar
  73. 73.
    Watanabe, K.-i., Yoshida, K.-i.: Hilbert–Kunz multiplicity and an inequality between multiplicity and colength. J. Algebra 230, 295–317 (2000)Google Scholar
  74. 74.
    Watanabe, K.-i., Yoshida, K.: Hilbert–Kunz multiplicity of two-dimensional local rings. Nagoya Math. J. 162, 87–110 (2001)Google Scholar
  75. 75.
    Watanabe, K.-i., Yoshida, K.: Hilbert–Kunz multiplicity, McKay correspondence and good ideals in two-dimensional rational singularities. Manuscripta Math. 104, 275–294 (2001)Google Scholar
  76. 76.
    Watanabe, K.-i., Yoshida, K.-i.: Minimal relative Hilbert–Kunz multiplicity. Illinois J. Math. 48, 273–294 (2004)Google Scholar
  77. 77.
    Watanabe, K.-i., Yoshida, K.-i.: Hilbert–Kunz multiplicity of three-dimensional local rings. Nagoya Math. J. 177, 47–75 (2005)Google Scholar
  78. 78.
    Yao, Y.: Modules with finite F-representation type. J. London Math. Soc. 72, 53–72 (2005)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Yao, Y.: Observations on the F-signature of local rings of characteristic p. J. Algebra 299, 198–218 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations