Advertisement

Coverage

  • Ding-Zhu Du
  • Peng-Jun Wan
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 77)

Abstract

A classic type of resource management problem is as follows: Given a certain amount of resource and a set of users, find an assignment of resource to maximize the number of satisfied users. The maximum lifetime coverage is such a classic type of problem in wireless sensor networks.

Keywords

Wireless Sensor Network Data Packet Unit Disk Graph Sensor Cover Resource Management Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Network 3(3), 257–279 (2005)CrossRefGoogle Scholar
  2. 2.
    Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-approximation for minimum-weight (connected) dominating sets in unit disk graphs. Proceedings of the 9th International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX 2006). Lecture Notes in Computer Science, vol. 4110 pp. 3–14. Springer, Berlin (2006)Google Scholar
  3. 3.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baudis, G., Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Approximating minimum spanning sets in hypergraphs and polymatroids. Technical Report, Humboldt-Universitt zu Berlin (2000)Google Scholar
  5. 5.
    Benini, L., Castelli, G., Macii, A., Poncino, M., Scarsi, R.: A discrete-time battery model for high-level power estimation. Proceedings of DATE, pp. 35–39 (2000)Google Scholar
  6. 6.
    Berman, P., Calinescu, G., Shah, C., Zelikovsky, A.: Power efficient monitoring management in sensor networks. IEEE Wireless Communication and Networking Conference (WCNC’04), Atlanta, pp. 2329–2334 (2004)Google Scholar
  7. 7.
    Berman, P., Calinescu, G., Shah, C., Zelikovsky, A.: Efficient energy management in sensor networks. In: Xiao, Y., Pan, Y. (eds.) Ad Hoc and Sensor Networks, Wireless Networks and Mobile Computing, vol. 2. Nova Science Publishers, New York (2005)Google Scholar
  8. 8.
    Bharghavan, V., Das, B.: Routing in ad hoc networks using minimum connected dominating sets. International Conference on Communication, Montreal, Canada (1997)Google Scholar
  9. 9.
    Butenko, S., Kahruman-Anderoglu, S., Ursulenko, O.: On connected domination in unit ball graphs. Optim. Lett. 5(2), 195–205 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Byrka, J., Grandoni, F., Rothvoss, T., Sanita, L.: An improved LP-based approximation for Steiner tree. STOC’10, pp. 583–592 (2010)Google Scholar
  11. 11.
    Calinescu, G., Ellis, R.: On the lifetime of randomly deployed sensor networks. DialM-POMC the Fifth ACM SIGACTSIGOPS International Workshop on Foundation of Mobile Computing (2008)Google Scholar
  12. 12.
    Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power assignment in ad-hoc wireless networks. Proceedings of European Symposium on Algorithms (ESA’03), Lecture Notes in Computer Science, vol. 2832, pp. 114–126 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cardei, M., Du, D.-Z.: Improving wireless sensor network lifetime through power aware organization. ACM Wireless Network. 11(3), 333–340 (2005)CrossRefGoogle Scholar
  14. 14.
    Cardei, M., Cheng, M.X., Cheng, X., Du, D.-Z.: Connected domination in ad hoc wireless networks. In: Proceedings the Sixth International Conference on Computer Science and Informatics (CS&I’2002) (2002)Google Scholar
  15. 15.
    Cardei, M., Thai, M., Li, Y., Wu, W.: Energy-efficient target coverage in wireless sensor networks. IEEE INFOCOM, pp. 1976–1984 (2005)Google Scholar
  16. 16.
    Cardei, M., MacCallum, D., Cheng, X., Min, M., Jia, X., Li, D., Du, D.-Z.: Wireless sensor networks with energy efficient organization. J. Interconnect. Networks 3(3–4), 213–229 (2002)CrossRefGoogle Scholar
  17. 17.
    Chen, Y.P., Liestman, A.L.: Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks. In: Proceedings of the Third ACM International Symposium on Mobile ad hoc Networking and Computing, Lausanne, Switzerland (2002)Google Scholar
  18. 18.
    Cheng, M.X., Gong, X.: Maximum lifetime coverage preserving scheduling algorithms in sensor networks. J. Global Optim. 51(3), 447–462 (2011)zbMATHCrossRefGoogle Scholar
  19. 19.
    Cheng, M.X., Ruan, L., Wu, W.: Achieving minimum coverage breach under bandwidth constraints in wireless sensor networks. INFOCOM, pp. 2638–2645 (2005)Google Scholar
  20. 20.
    Cheng, M.X., Ruan, L., Wu, W.: Coverage breach problems in bandwidth-constrained sensor networks. TOSN 3(2), 12 (2007)CrossRefGoogle Scholar
  21. 21.
    Cheng, X., Ding, M., Du, D.H., Jia, X.: Virtual backbone construction in multihop ad hoc wireless networks. Wireless Comm. Mobile Comput. 6, 183–190 (2006)CrossRefGoogle Scholar
  22. 22.
    Cheng, X., Huang, X., Li, D., Wu, W., Du, D.-Z.: A polynomial-time approximation scheme for minimum connected dominating set in ad hoc wireless networks. Networks 42(2), 202–208 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Disc. Math. 86(1–3), 165–177 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Colbourn, C.J., Stewart, L.K.: Permutation graphs: connected domination and Steiner trees. Disc. Math. 86(1–3), 179–189 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 15(10), 908–920 (2004)CrossRefGoogle Scholar
  27. 27.
    Dai, D., Yu, C.: A (5 + ε)-approximation algorithm for minimum weighted dominating set in unit disk graph. Theor. Comput. Sci. 410, 756–765 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Deering, S., Farinacci, D., Jacobson, V., Lui, C.-G., Wei, L.: An architecture for wide area multicast routing. In: Proceedings of ACM SIGCOMM 1994, pp. 126–135 (1994)CrossRefGoogle Scholar
  29. 29.
    Ding, L., Wu, W., Willson, J.K., Du, H., Lee, W.: Construction of directional virtual backbones with minimum routing cost in wireless networks. In: 30th Annual Joint Conference of IEEE Communication and Computer Society (INFOCOM), pp. 1557–1565 (2011)Google Scholar
  30. 30.
    Ding, L., Wu, W., Willson, J.K., Du, H., Lee, W.: Efficient virtual backbone construction with routing cost constraint in wireless networks using directional antennas. IEEE Trans. Mobile Comput. 11(7), 1102–1112 (2012)CrossRefGoogle Scholar
  31. 31.
    Ding, L., Gao, X., Wu, W., Lee, W., Zhu, X., Du, D.-Z.: An exact algorithm for minimum CDS with shortest path constraint in wireless networks. Optim. Lett. (2010) published onlineGoogle Scholar
  32. 32.
    Ding, L., Gao, X., Wu, W., Lee, W., Zhu, Xu, Du, D.-Z.: Distributed construction of connected dominating sets with minimum routing cost in wireless network. In: Proceedings of the 30th International Conference on Distributed Computing Systems (ICDCS), pp. 448–457 (2010)Google Scholar
  33. 33.
    Ding, L., Wu, W., Willson, J.K., Du, H., Lee, W., Du, D.-Z.: Efficient algorithms for topology control problem with routing cost constraints in wireless networks. IEEE. Trans. Parallel. Distr. Syst. 22(10), 1601–1609 (2011)CrossRefGoogle Scholar
  34. 34.
    Ding, L., Wu, W., Willson, J.K., Wu, L., Lu, Z., Lee, W.: Constant-approximation for target coverage problem in wireless sensor networks. In: Proceedings of the 31st Annual Joint Conference of IEEE Communication and Computer Society (INFOCOM) (2012)Google Scholar
  35. 35.
    Douglas, R.J.: NP-completeness and degree restricted spanning trees. Disc. Math. 105(1–3), 41–47 (1992)zbMATHCrossRefGoogle Scholar
  36. 36.
    Du, D.-Z., Ko, K.-I., Hu, X.: Design and Analysis of Approximation Algorithms. Springer, Berlin (2011)Google Scholar
  37. 37.
    Du, H., Pardalos, P.M., Wu, W., Wu, L.: Maximum lifetime connected coverage with two active-phase sensors. J. Global Optim. (2012), on lineGoogle Scholar
  38. 38.
    Du, D.-Z., Thai, M.Y., Li, Y., Liu, D., Zhu, S.: Strongly connected dominating sets in wireless sensor networks with unidirectional links. APWeb, pp. 13–24 (2006)Google Scholar
  39. 39.
    Du, H., Wu, W., Ye, Q., Li, D., Lee, W., Xu, X.: CDS-based virtual backbone construction with guaranteed routing cost in wireless sensor networks. IEEE Trans. Parallel Distr. Syst., to appearGoogle Scholar
  40. 40.
    Du, D.-Z., Graham, R.L., Pardalos, P.M., Wan, P.J., Wu, W., Zhao, W.: Analysis of greedy approximation with nonsubmodular potential functions. In: Proceedings of SODA (2008)Google Scholar
  41. 41.
    Du, H., Ye, Q., Zhong, J., Wang, A., Lee, W., Park, H.: PTAS for minimum connected dominating set with routing cost constraint in wireless sensor networks. In: 4th Annual International Conference on Combinatorial Optimization and Applications (COCOA) (2010)Google Scholar
  42. 42.
    Du, H., Wu, W., Lee, W., Liu, Q., Zhang, Z., Du, D.-Z.: On minumum submodular cover with submodular cost. J. Global Optim. 50(2), 229–234 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Du, H., Ye, Q., Wu, W., Lee, W., Li, D., Du, D.-Z., Howard, S.: Constant approximation for virtual backbone construction with guaranteed routing cost in wireless sensor networks. INFOCOM, pp. 1737–1744 (2011)Google Scholar
  44. 44.
    Duchet, P., Meyniel, H.: On Hadwiger’s number and stability numbers. Annal. Disc. Math. 13, 71–74 (1982)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Eriksson, H.: MBone: the multicast backbone. Commun. ACM (1994)Google Scholar
  46. 46.
    Erlebach, T., Mihalák, M.: A (4 + ε)-approximation for the minimum-weight dominating set problem in unit disk graphs. WAOA, pp. 135–146 (2009)Google Scholar
  47. 47.
    Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Feige, U., Halldórsson, M.M., Kortsarz, G., Srinivasan, A.: Approximating the domatic number. SIAM J. Comput. 32(1), 172–195 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Fodor, F.: The densest packing of 13 congruent circles in a circle. Beitrage Algebra Geom. 44(2), 431–440 (2003)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Folkman, J.H., Graham, R.L.: A packing inequality for compact convex subsets of the plane. Canad. Math. Bull. 12, 745–752 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Funke, S., Kesselman, A., Meyer, U., Segal, M.: A simple improved distributed algorithm for minimum CDS in unit disk graphs. ACM Trans. Sensor Net. 2, 444–453 (2006)CrossRefGoogle Scholar
  52. 52.
    Fujito, T.: Approximation algorithms for submodular set cover with application, IEICE Trans. Inf. Syst. E83-D(3), 480–487 (2000)Google Scholar
  53. 53.
    Gao, X., Huang, Y., Zhang, Z., Wu, W.: (6+epsilon)-approximation for minimum weight dominating set in unit disk graphs. COCOON, pp. 551–557 (2008)Google Scholar
  54. 54.
    Gao, X., Wang, Y., Li, X., Wu, W.: Analysis on theoretical bounds of approximating dominating set problems. Disc. Math. Algorithms Appl. 1(1), 71–84 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flows and other fractional packing problems. In: Proceedings of 39th Annual Symposium on the Foundations of Computer Science (FOCS), pp. 300–309 (1998)Google Scholar
  56. 56.
    Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Sons, San Francisco, CA (1979)zbMATHGoogle Scholar
  58. 58.
    Gfeller, B., Vicari, E.: A faster distributed approximation scheme for the connected dominating set problem for growth-bounded graphs. In: Proceedings of the 6th Ad-Hoc, Mobile, and Wireless Networks International Conference (ADHOC-NOW 2007). Lecture Notes in Computer Science, vol. 4686, pp. 59–73. Springer, Berlin (2007)Google Scholar
  59. 59.
    Gibson, M., Pirwani, I.: Algorithms for dominating set in disk graphs: breaking the logn barrier. Algorithms–ESA, pp. 243–254 (2010)Google Scholar
  60. 60.
    Green, P.E.: Fiber-Optic Networks. Prentical-Hall, Cambrige, MA (1992)Google Scholar
  61. 61.
    Groemer, H.: Über die Einlagerung von Kreisen in einen konvexen Bereich. Math. Z. 73, 285–294 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4), 374–387 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Guha, S., Khuller, S.: Improved methods for approximating node weighted Steiner trees and connected dominating sets. Springer Lect. Notes Comput. Sci. 1530, 54–66 (1998)CrossRefGoogle Scholar
  64. 64.
    Hahn, R., Reichl, H.: Batteries and power supplies for wearable and ubiquitous computing. In: Proceedings of the 3rd International Symposium on Wearable Computers (1999)Google Scholar
  65. 65.
    Hoppe, R.: Bemerkungen de redaktion. Grunert Arch. Math. Phys. 56, 307–312 (1874)Google Scholar
  66. 66.
    Huang, Y., Gao, X., Zhang, Z., Wu, W.: A better constant-factor approximation for weighted dominating set in unit disk graph. J. Combin. Optim. 18(2), 179–194 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Kim, D., Wu, Y., Li, Y., Zou, F., Du, D.-Z.: Constructing minimum connected dominating sets with bounded diameters in wireless networks. IEEE Trans. Parallel Distrib. Syst. 20(2), 147–157 (2009)CrossRefGoogle Scholar
  68. 68.
    Kim, D., Zhang, Z., Li, X., Wang, W., Wu, W., Du, D.-Z.: A better approximation algorithm for computing connected dominating sets in unit ball graphs. IEEE Trans. Mobile Comput. 9(8), 1108–1118 (2010)CrossRefGoogle Scholar
  69. 69.
    Klein, P.N., Ravi, R.: A nearly best-possible approximation for node-weighted Steiner trees. J. Algorithms 19, 104–115 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Kuhn, F., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. In: Proceedings of the Joint Workshop of Foundation of Mobile Computing (DIALM-POMC) (2003)Google Scholar
  71. 71.
    Laskar, R., Pfaff, J.: Domination and irredundance in split graphs. Technical Report 430, Department of Mathematical Sciences, Clemson University (1983)Google Scholar
  72. 72.
    Li, M., Wan, P.J., Yao, F.F.: Tighter approximation bounds for minimum CDS in wireless ad hoc networks. ISAAC’2009. Lecture Notes in Computer Science, vol. 5878, pp. 699–709 (2009)CrossRefGoogle Scholar
  73. 73.
    Li, D., Du, X., Hu, X., Jia, X.: Minimizing number of wavelengths in multicast routing trees in WDM networks. Networks 35(4), 260–265 (2000)CrossRefGoogle Scholar
  74. 74.
    Li, Y., Thai, M.T., Wang, F., Du, D.-Z.: On the construction of a strongly connected broadcast arborescence with bounded transmission delay. IEEE Trans. Mobile Comput. 5(10), 1460–1470 (2006)CrossRefGoogle Scholar
  75. 75.
    Li, Y., Thai, M.Y., Wang, F., Yi, C.-W., Wan, P.-J., Du, D.-Z.: On greedy construction of connected dominating sets in wireless networks. Wireless Commun. Mobile Comput. 5, 927–932 (2005)CrossRefGoogle Scholar
  76. 76.
    Li, D., Du, H., Wan, P.-J., Gao, X., Zhang, Z., Wu, W.: Minimum power strongly connected dominating sets in wireless networks. In: Proceedings of the 2008 International Conference on Wireless Networks (ICWN’08) (2008)Google Scholar
  77. 77.
    Li, D., Du, H., Wan, P.-J., Gao, X., Zhang, Z., Wu, W.: Construction of strongly connected dominating sets in asymmetric multihop wireless networks. Theoret. Comput. Sci. 410(8–10), 661–669 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Liu, Q., Li, X., Wu, L., Du, H., Zhang, Z., Wu, W., Xu, Y.: A new proof for Zassenhaus–Groemer–Oler inequality. Disc. Math. Algorithms Appl. (2012), to appearGoogle Scholar
  79. 79.
    Min, M., Du, H., Jiao, X., Huang, X., Huang, S.C.-H., Wu, W.: Improving construction for connected dominating set with Steiner tree in wireless sensor networks. J. Global Optim. 35, 111–119 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Moscibroda, T., Wattenhofer, R.: Maximizing the lifetime of dominating sets. In: Proceedings of the 5th IEEE International Workshop on Algorithms for Wireless, Mobile, Ad hoc and Sensor Networks (2005)Google Scholar
  81. 81.
    Mukherjee, B.: WDM-based local lightwave networks Part I: single-hop system. IEEE Networks 3, 12–26 (1992)CrossRefGoogle Scholar
  82. 82.
    Mukherjee, B.: WDM-based local lightwave networks Part II: multihop system. IEEE Networks 4, 22–32 (1992)Google Scholar
  83. 83.
    Mustafa, N., Ray, S.: Improved results on geometric hitting set problems. Disc. Comput. Geometry 44(4), 883–895 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1999)zbMATHGoogle Scholar
  85. 85.
    Oler, N.: An inequality in the geometry of numbers. Acta Math. 105, 19–48 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Pandit, S., Pemmaraju, S.V., Varadarajan, K.R.: Approximation algorithms for domatic partitions of unit disk graphs. In: Dinur, L. et al. (eds.) APPROX and RANDOM 2009. Lecture Notes in Computer Science, vol. 5687, pp. 312–325 (2009)MathSciNetCrossRefGoogle Scholar
  87. 87.
    Ramamurthy, B., Iness, J., Mukherjee, B.: Minimizing the number of optical amplifiers needed to support a multi-wavelength optical LAN/MAN. In: Proceedings of IEEE INFOCOM’97, pp. 261–268 (1997)Google Scholar
  88. 88.
    Ramaswami, R., Sasaki, G.: Multiwavelength optical networks with limited wavelength conversion. IEEE/ACM Trans. Networking 6(6), 744–754 (1998)CrossRefGoogle Scholar
  89. 89.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of 28th STOCS (1997)Google Scholar
  90. 90.
    Ruan, L., Du, D.-Z., Hu, X., Jia, X., Li, D.: Approximations for color-covering problems. In: Proceedings of 1st International Congress of Chinese Mathematicians, pp. 503–507. Beijing, China (1998)Google Scholar
  91. 91.
    Ruan, L., Du, D.-Z., Hu, X., Jia, X., Li, D., Sun, Z.: Converter placement supporting broadcast in WDM optical networks. IEEE Trans. Comput. 50(7), 750–758 (2001)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.-I.: A greedy approximation for minimum connected dominating set. Algorithmca, 329(1–3), 325–330 (2004)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Salhieh, A., Weinmann, J., Kochha, M., Schwiebert, L.: Power efficient topologies for wireless sensor networks. ICPP’2001, pp. 156–163 (2001)Google Scholar
  94. 94.
    Sampathkumar, E., Walikar, H.B.: The connected domination number of a graph. J. Math. Phys. Sci. 13(6), 607–613 (1979)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Sivakumar, R., Das, B., Bharghavan, V.: An improved spine-based infrastructure for routing in ad hoc networks. In: IEEE Symposium on Computer and Communications, Athens, Greece (1998)Google Scholar
  96. 96.
    Slijepcevic, S., Potkonjak, M.: Power efficient organization of wireless sensor networks. IEEE International Conference on Communications, pp. 472–476 (2001)Google Scholar
  97. 97.
    Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. In: Proceedings of 6th European Symposium on Algorithms (ESA’98). Lecture Notes in Computer Science, vol. 1461, pp. 441–452. Springer, Berlin (1998)Google Scholar
  98. 98.
    Srinivasan, A., Wu, J.: TRACK: A novel connected dominating set based sink mobility model for WSNs. ICCCN, pp. 664–671 (2008)Google Scholar
  99. 99.
    Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination based broadcasting algorithms in wireless networks. In: Proceedings of IEEE Hawaii International Conference on System Sciences (2001)Google Scholar
  100. 100.
    Sum, J., Wu, J., Ho, K.: Analysis on a localized pruning method for connected dominating sets. J. Inf. Sci. Eng. 23(4), 1073–1086 (2007)MathSciNetGoogle Scholar
  101. 101.
    Thai, M.T., Du, D.-Z.: Connected dominating sets in disk graphs with bidirectional links. IEEE Commun. Lett. 10(3), 138–140 (2006)CrossRefGoogle Scholar
  102. 102.
    Thai, M.Y., Wang, F., Liu, D., Zhu, S., Du, D.-Z.: Connected dominating sets in wireless networks with different communication ranges. IEEE Trans. Mobile Comput. 6(7), 721–730 (2007)CrossRefGoogle Scholar
  103. 103.
    Vahdatpour, A., Dabiri, F., Moazeni, M., Sarrafzadeh, M.: Theoretical bound and practical analysis of connected dominating set in ad hoc and sensor networks. In: Proceedings of 22nd International Symposium on Distributed Computing (DISC), pp. 481–495 (2008)Google Scholar
  104. 104.
    Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in wireless ad hoc networks. ACM/Springer Mobile Network. Appl. 9(2), 141–149 (2004). A preliminary version of this paper appeared in IEEE INFOCOM (2002)Google Scholar
  105. 105.
    Wan, P.-J., Alzoubi, K.M., Frieder, O.: A simple heuristic for minimum connected dominating set in graphs. Int. J. Found. Comput. Sci. 14(2), 323–333 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Wan, P.J., Wang, L., Yao, F.F.: Two-phased approximation algorithms for minimum CDS in wireless ad hoc networks. IEEE ICDCS, pp. 337–344 (2008)Google Scholar
  107. 107.
    Wan, P.-J., Xu, X., Wang, Z.: Wireless coverage with disparate ranges. ACM Mobihoc (2011)Google Scholar
  108. 108.
    Wan, P.-J., Du, D.-Z., Pardalos, P.M., Wu, W.: Greedy approximations for minimum submodular cover with submodular cost. Comput. Optim. Appl. 45(2), 463–474 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Wan, P.J., Huang, S.C.-H., Wang, L., Wan, Z., Jia, X.: Minimum-latency aggregation scheduling in multihop wireless networks. ACM MOBIHOC (2009)Google Scholar
  110. 110.
    Wan, P.-J., Wang, Z., Wan, Z., Huang, S.C.-H., Liu, H.: Minimum-latency schedulings for group communications in multi-channel multihop wireless networks. WASA (2009)Google Scholar
  111. 111.
    Wang, F., Thai, M.T., Du, D.-Z.: On the construction of 2-connected virtual backbone in wireless networks. IEEE Trans. Wireless Commun. 8(3), 1230–1237 (2009)CrossRefGoogle Scholar
  112. 112.
    Wang, L., Wan, P.-J., Yao, F.F.: Minimum CDS in multihop wireless networks with disparate communication ranges, WASA (2010)Google Scholar
  113. 113.
    White, K., Parber, M., Pulleyblank, W.: Steiner trees, connected domination and strongly chordal graphs. Networks 15(1), 109–124 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Willson, J.K., Ding, L., Wu, W., Wu, L., Lu, Z., Lee, W.: A better constant-approximation for coverage problem in wireless sensor networks, preprint.Google Scholar
  115. 115.
    Willson, J.K., Gao, X., Qu, Z., Zhu, Y., Li, Y., Wu, W.: Efficient distributed algorithms for topology control problem with shortest path constraints. Disc. Math. Algorithms Appl. 1, 437–461 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Wolsey, L.A.: An analysis of the greedy algorithm for submodular set covering problem. Combinatorica 2(4), 385–393 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Wu, J., Li, H.: On calculating connected dominating set for efficient routing in ad hoc wireless networks. In: Proceedings of the 3rd ACM International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 7–14 (1999)Google Scholar
  118. 118.
    Wu, J., Dai, F.: Virtual backbone construction in MANETs using adjustable transmission ranges. IEEE Trans. Mob. Comput. 5(9), 1188–1200 (2006)CrossRefGoogle Scholar
  119. 119.
    Wu, J., Gao, M., Stojmenovic, I.: On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless networks. ICPP pp. 346–356 (2001)Google Scholar
  120. 120.
    Wu, J., Wu, B., Stojmenovic, I.: Power-aware broadcasting and activity scheduling in ad hoc wireless networks using connected dominating sets. Wireless Commun. Mobile Comput. 3(4), 425–438 (2003)CrossRefGoogle Scholar
  121. 121.
    Wu, J., Dai, F., Yang, S.: Iterative local solutions for connected dominating set in ad hoc wireless networks, MASS (2005)Google Scholar
  122. 122.
    Wu, J., Lou, W., Dai, F.: Extended multipoint relays to determine connected dominating sets in MANETs. IEEE Trans. Comput. 55(3), 347–337 (2006)CrossRefGoogle Scholar
  123. 123.
    Wu, W., Du, H., Jia, X., Li, Y., Huang, S.C.-H.: Minimum connected dominating sets and maximal independent sets in unit disk graphs, Theor. Comput. Sci. 352(1–3), 1–7 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Xing, K., Cheng, W., Park, E.K., Rotenstreich, S.: Distributed connected dominating set construction in geometric k-disk graphs. IEEE ICDCS, pp. 673–680 (2008)Google Scholar
  125. 125.
    Zassenhaus, H.: Modern development in the geometry of numbers. Bull. Amer. Math. Soc. 67, 427–439 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Zhang, Y., Li, W.: Modeling and energy consumption evaluation of a stochastic wireless sensor networks. preprint (2011)Google Scholar
  127. 127.
    Zhang, Z., Gao, X., Wu, W., Du, D.-Z.: A PTAS for minimum connected dominating set in 3-dimensional wireless sensor networks. J. Global Optim. 45(3), 451–458 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Zhang, N., Shin, I., Zou, F., Wu, W., Thai, M.T.: Trade-off scheme for fault tolerant connected dominating sets on size and diameter. FOWANC, pp. 1–8 (2008)Google Scholar
  129. 129.
    Zhao, Y., Wu, J., Li, F., Lu, S.: VBS: Maximum lifetime sleep scheduling for wireless sensor networks using virtual backbones, INFOCOM pp. 366–370 (2010)Google Scholar
  130. 130.
    Zhong, C.: Sphere Packing. Springer, Berlin (1999)Google Scholar
  131. 131.
    Zhong, X., Wang, J., Hu, N.: Connected dominating set in 3-dimensional space for ad hoc network. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC’07) (2007)Google Scholar
  132. 132.
    Zou, F., Li, X., Kim, D., Wu, W.: Construction of minimum connected dominating set in 3-dimensional wireless networks. In: Proceedings of Third International Conference on Wireless Algorithms, Systems and Applications (WASA 08) (2008)Google Scholar
  133. 133.
    Zou, F., Li, X., Gao, S., Wu, W.: Node-weighted Steiner tree approximation in unit disk graphs. J. Combin. Optim. 18(4), 342–349 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Zou, F., Wang, Y., Xu, X., Du, H., Li, X., Wan, P., Wu, W.: New approximations for weighted dominating sets and connected dominating sets in unit disk graphs. Theoret. Comput. Sci. 412(3), 198–208 (2011)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ding-Zhu Du
    • 1
  • Peng-Jun Wan
    • 2
  1. 1.Department of Computer ScienceUniversity of Texas, DallasRichardsonUSA
  2. 2.Department of Computer ScienceIllinois Institute of TechnologyChicagoUSA

Personalised recommendations