Skip to main content

Introduction

  • Chapter
  • First Online:
RFID as an Infrastructure

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 1452 Accesses

Abstract

RFID (radio frequency identification) tags are becoming ubiquitously available in object tracking, access control, and toll payment. The current application model treats tags simply as ID carriers and deals with each tag individually for the purpose of identifying the object that the tag is attached to. The uniqueness of this book is to change the traditional individual view to a collective view that treats universally-deployed tags as a new infrastructure, a new wireless platform on which novel applications can be developed. This chapter argues for such a paradigm shift. It introduces the problems of tag estimation and information collection from RFID systems, and explains the challenges, laying the background for the rest of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If a tag reports an abnormal temperature, the reader may instruct the tag to keep transmitting beacons, which guide a mobile signal detector to locate the tag.

References

  1. Information Technology – Radio Frequency Identification for Item Management Air Interface – Part 6: Parameters for Air Interface Communications at 860-960 MHz. Final Draft International Standard ISO 18000-6 (2003)

    Google Scholar 

  2. Bhandari, N., Sahoo, A., Iyer, S.: Intelligent Query Tree (IQT) Protocol to Improve RFID Tag Read Efficiency. Proc. of IEEE ICIT (2006)

    Google Scholar 

  3. Bu, K., Xiao, B., Xiao, Q., Chen, S.: Efficient Pinpointing of Misplaced Tags in Large RFID Systems. Proc. of IEEE SECON (2011)

    Google Scholar 

  4. Bustillo, M.: Wal-Mart Radio Tags to Track Clothing (2010). URL http://online.wsj.com/article/SB10001424052748704421304575383%213061198090.html

  5. Cha, J.R., Kim, J.H.: Dynamic Framed Slotted ALOHA Algorithms using Fast Tag Estimation Method for RFID Systems. Proc. of IEEE CCNC (2006)

    Google Scholar 

  6. Chen, S., Fang, Y., Xia, Y.: Lexicographic Maxmin Fairness for Data Collection in Wireless Sensor Networks. IEEE Transactions on Mobile Computing 6(7), 762–776 (2007)

    Article  Google Scholar 

  7. Chen, S., Yang, N.: Congestion Avoidance based on Lightweight Buffer Management in Sensor Networks. IEEE Transactions on Parallel and Distributed Systems 17(9), 934–946 (2006)

    Article  Google Scholar 

  8. Chen, S., Zhang, M., Xiao, B.: Efficient Information Collection Protocols for Sensor-augmented RFID Networks. Proc. of IEEE INFOCOM (2011)

    Google Scholar 

  9. Dimitriou, T.: A Secure and Efficient RFID Protocol that Could Make Big Brother (partially) Obsolete. Proc. of IEEE PerCom (2006)

    Google Scholar 

  10. Erlingsson, Ú., Manasse, M., McSherry, F.: A Cool and Practical Alternative to Traditional Hash Tables. Proc. of WDAS (2006)

    Google Scholar 

  11. Han, H., Sheng, B., Tan, C.C., Li, Q., Mao, W., Lu, S.: Counting RFID Tags Efficiently and Anonymously. Proc. of IEEE INFOCOM (2010)

    Google Scholar 

  12. Hollinger, R., Davis, J.: National Retail Security Survey (2001). URL http://diogenesllc.com/NRSS_2001.pdf

  13. Hwang, K., Vander-Zanden, B., Taylor, H.: A Linear-time Probabilistic Counting Algorithm for Database Applications. ACM Transactions on Database Systems 15(2) (1990)

    Google Scholar 

  14. Kodialam, M., Nandagopal, T.: Fast and Reliable Estimation Schemes in RFID Systems. Proc. of ACM MOBICOM (2006)

    Google Scholar 

  15. Kodialam, M., Nandagopal, T., Lau, W.: Anonymous Tracking Using RFID tags. Proc. of IEEE INFOCOM (2007)

    Google Scholar 

  16. Lee, S., Joo, S., Lee, C.: An Enhanced Dynamic Framed Slotted ALOHA Algorithm for RFID Tag Identification. Proc. of IEEE MOBIQUITOUS (2005)

    Google Scholar 

  17. Li, T., Luo, W., Mo, Z., Chen, S.: Privacy-preserving RFID Authentication based on Cryptographical Encoding. Proc. of IEEE INFOCOM (2012)

    Google Scholar 

  18. Li, T., Wu, S., Chen, S., Yang, M.: Energy Efficient Algorithms for the RFID Estimation Problem. Proc. of IEEE INFOCOM (2010)

    Google Scholar 

  19. Lu, L., Han, J., Hu, L., Liu, Y., Ni, L.: Dynamic Key-Updating: Privacy-Preserving Authentication for RFID Systems. Proc. of IEEE PerCom (2007)

    Google Scholar 

  20. Lu, L., Han, J., Xiao, R., Liu, Y.: ACTION: Breaking the Privacy Barrier for RFID Systems. Proc. of IEEE INFOCOM (2009)

    Google Scholar 

  21. Lu, L., Liu, Y., Li, X.: Refresh: Weak Privacy Model for RFID Systems. Proc. of IEEE INFOCOM (2010)

    Google Scholar 

  22. Luo, W., Chen, S., Li, T., Chen, S.: Efficient Missing Tag Detection in RFID Systems. Proc. of IEEE INFOCOM, mini-conference (2011)

    Google Scholar 

  23. Luo, W., Chen, S., Li, T., Qiao, Y.: Probabilistic Missing-tag Detection and Energy-Time Tradeoff in Large-scale RFID Systems. Proc. of ACM MobiHoc (2012)

    Google Scholar 

  24. Miura, M., Ito, S., Takatsuka, R., Sugihara, T., Kunifuji, S.: An Empirical Study of an RFID Mat Sensor System in a Group Home. Journal of Networks 4(2) (2009)

    Google Scholar 

  25. Myung, J., Lee, W.: Adaptive Splitting Protocols for RFID Tag Collision Arbitration. Proc. of ACM MOBIHOC (2006)

    Google Scholar 

  26. Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.: LANDMARC: Indoor Location Sensing using Active RFID. ACM Wireless Networks (WINET) 10(6) (2004)

    Google Scholar 

  27. Qian, C., Ngan, H., Liu, Y.: Cardinality Estimation for Large-scale RFID Systems. Proc. of IEEE PerCom (2008)

    Google Scholar 

  28. Qiao, Y., Chen, S., Li, T., Chen, S.: Energy-efficient Polling Protocols in RFID Systems. Proc. of ACM MobiHoc (2011)

    Google Scholar 

  29. Ruhanen, A., Hanhikorpi, M., Bertuccelli, F., Colonna, A., Malik, W., Ranasinghe, D., Lopez, T.S., Yan, N., Tavilampi, M.: Sensor-enabled RFID Tag Handbook. BRIDGE, IST-2005-033546 (2008)

    Google Scholar 

  30. Sarangan, V., Devarapalli, M.R., Radhakrishnan, S.: A Framework for Fast RFID Tag Reading in Static and Mobile Environments. The International Journal of Computer and Telecommunications Networking 52(5) (2008)

    Google Scholar 

  31. Sheng, B., Li, Q., Mao, W.: Efficient Continuous Scanning in RFID Systems. Proc. of IEEE INFOCOM (2010)

    Google Scholar 

  32. Sheng, B., Tan, C.C., Li, Q., Mao, W.: Finding Popular Categories for RFID Tags. Proc. of ACM MOBIHOC (2008)

    Google Scholar 

  33. Tan, C., Sheng, B., Li, Q.: How to Monitor for Missing RFID Tags. Proc. of IEEE ICDCS (2008)

    Google Scholar 

  34. Vogt, H.: Efficient Object Identification with Passive RFID Tags. Proc. of IEEE PerCom (2002)

    Google Scholar 

  35. Want, R.: An Introduction to RFID Technology. Proc. of IEEE PerCom (2006)

    Google Scholar 

  36. Weis, S.A.: RFID (Radio Frequency Identification): Principles and Applications. MIT CSAIL (2007)

    Google Scholar 

  37. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and Privacy Aspects of Low-cost Radio Frequency Identification Systems. Lecture Notes in Computer Science — Security in Pervasive Computing 2802 (2004)

    Google Scholar 

  38. Wikipedia: Radio-frequency identification (Mar 2012). URL http://en.wikipedia.org/wiki/Radio-frequency_identification

  39. Wolverton, J.: Wal-Mart to Embed RFID Tags in Clothing Beginning August 1 (2010). URL http://www.thenewamerican.com/index.php/tech-mainmenu-30/computers/4157-wal-mart-to-embed-rfid-tags-in-clothing-beginning-august-1

  40. Yao, Q., Qi, Y., Han, J., Zhao, J., Li, X., Liu, Y.: Randomizing RFID Private Authentication. Proc. of IEEE PerCom (2009)

    Google Scholar 

  41. Yue, H., Zhang, C., Pan, M., Fang, Y., Chen, S.: A Time-efficient Information Collection Protocol for Large-scale RFID Systems. Proc. of IEEE INFOCOM (2012)

    Google Scholar 

  42. Zhang, M., Li, T., Chen, S., Li, B.: Using Analog Network Coding to Improve the RFID Reading Throughput. Proc. of IEEE ICDCS (2010)

    Google Scholar 

  43. Zhen, B., Kobayashi, M., Shimizu, M.: Framed ALOHA for Multiple RFID Objects Identification. IEICE Transactions on Communications (2005)

    Google Scholar 

  44. Zheng, Y., Li, M.: Fast Tag Searching Protocol for Large-Scale RFID Systems. Proc. of IEEE ICNP (2011)

    Google Scholar 

  45. Zhou, F., Chen, C., Jin, D., Huang, C., Min, H.: Evaluating and Optimizing Power Consumption of Anti-collision Protocols for Applications in RFID Systems. Proc. of ISLPED (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Qiao, Y., Chen, S., Li, T. (2013). Introduction. In: RFID as an Infrastructure. SpringerBriefs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5230-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5230-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5229-4

  • Online ISBN: 978-1-4614-5230-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics