Skip to main content

Retinal Prosthesis

  • Chapter
  • First Online:

Abstract

A microelectronic retinal prosthesis uses modern integrated circuit technology to address one of medicine’s most vexing problems: loss of sight due to photoreceptor degeneration. Other causes of blindness have been successfully addressed in recent times. Cataracts (opacity in the lens) are routinely treated by removal of the diseased lens and replacement with an artificial lens. Glaucoma can be regularly managed with topical eye drops. But the loss of photoreceptors cannot currently be overcome. New retinal prosthetic systems, based on the principle of electrical activation of nerve cells by a device implanted near the retina (Fig. 15.1), are under investigation for the treatment of photoreceptor degeneration [1, 2]. It is tempting to simply extrapolate other neural prostheses, such as cochlear implants (see editor), to retinal systems, and in some instances, it is valid to do so. However, the complexity of vision suggests that revolutionary new technology is needed to realize a useful visual prosthesis. In addition, the sense of vision has important differences compared to other senses that require special consideration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahuja AK, Dorn JD, Caspi A, McMahon MJ, Dagnelie G, daCruz L, Stanga P, Humayun MS, Greenberg RJ (2011) Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol 95:539–543. doi:10.1136/bjo.2010.179622

    Article  Google Scholar 

  2. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278(1711):1489–1497

    Article  Google Scholar 

  3. Westheimer G (2003) Visual Acuity. In: Kaufman PL, Alm A (eds) Adler’s physiology of the eye: clinical application (10th edn). Mosby, St. Louis, MO

    Google Scholar 

  4. Itti L, Koch C, Niebur E (1998) A model of saliency based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259. doi:10.1109/34.730558, ISSN: 0162-8828

    Article  Google Scholar 

  5. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7):1236–1249

    Google Scholar 

  6. Margalit E, Sadda SR (2003) Retinal and optic nerve diseases. Artif Organs 27(11):963–974

    Article  Google Scholar 

  7. Roig-melo EA, Alfaro DV III, Apple DJ (2000) Pathophysiology of the retinal pigment epithelium and choroid. In: Quiroz-Mercado H, Alfaro DV III, Ligget PE, Tano Y, De Juan E JR (eds) Macular surgery. Lippincott Williams and Wilkins, Philadelphia, PA, pp 14–23

    Google Scholar 

  8. Weisz JM, O’Connell SR, Bressler NM (2000) Treatment guidlines for age-related macular degeneration based upon results from the macular photocoagulation study. In: Quiroz-Mercado H, Alfaro DV III, Liggett PE, Tano Y, De Juan E Jr (eds) Macular surgery. Lippincott Williams and Wilkins, Philadelphia, PA, pp 201–211

    Google Scholar 

  9. Berson EL (1993) Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 34(5):1659–1676

    Google Scholar 

  10. Sharma RK, Ehinger B (1999) Management of hereditary retinal degenerations: present status and future directions. Surv Ophthalmol 43(5):427–444

    Article  Google Scholar 

  11. Stone JL, Barlow WE, Humayun MS, de Juan EJ, Milam AH (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110(11):1634–1639

    Article  Google Scholar 

  12. Santos A, Humayun MS, de Juan EJ, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115(4):511–515

    Article  Google Scholar 

  13. Humayun MS, Prince M, de Juan E, Barron Y Jr, Moskowitz M, Klock IB, Milam AH (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40(1):143–148

    Google Scholar 

  14. Kim S, Sadda S, Pearlman J, Humayun M, de Juan EJ, Melia M, Green W (2001) Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina August 2002 22(4):471–477

    Google Scholar 

  15. Potts AM, Inoue J (1969) The electrically evoked response (EER) of the visual system II. Effect of adaptation and retinitis pigmentosa. Investig Ophthalmol 8(6):605–612

    Google Scholar 

  16. Humayun MS, de Juan EJ, Weiland JD, Dagnelie G, Katona S, Greenberg RJ, Suzuki S (1999) Pattern electrical stimulation of the human retina. Vis Res 39:2569–2576

    Article  Google Scholar 

  17. Rizzo JF III, Wyatt J, Loewenstein J, Kelly S, Shire D, Wyatt J (2003) Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44(12):5355–5361

    Article  Google Scholar 

  18. Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22(5):607–655

    Article  Google Scholar 

  19. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813(1):181–186

    Article  Google Scholar 

  20. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, Nishida K, Kishima H, Maruo T, Konoma K, Ozawa M, Nishida K (2011) Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci: 52(7):4726–4733. doi:10.1167/iovs.10-6836

    Article  Google Scholar 

  21. Bi A, Cui J, Ma Y-P, Olshevskaya E, Pu M, Dizhoor AM, Pan Z-H (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1):23–33. doi:10.1016/j.neuron.2006.02.026

    Article  Google Scholar 

  22. Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, Roska B (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675. doi:10.1038/nn.2117

    Article  Google Scholar 

  23. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122(4):460–469

    Article  Google Scholar 

  24. Ciavatta VT, Kim M, Wong P, Nickerson JM, Shuler RK Jr, McLean GY, Pardue MT (2009) Retinal expression of Fgf2 in RCS rats with subretinal microphotodiode array. Invest Ophthalmol Vis Sci 50(10):4523–4530

    Article  Google Scholar 

  25. Palanker D, Vankov A, Huie P, Baccus S (2005) Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2:105–120

    Article  Google Scholar 

  26. Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141(2):171–198

    Article  Google Scholar 

  27. Mahadevappa M, Weiland JD, Yanai D, Fine I, Greenberg RJ, Humayun MS (2005) Perceptual thresholds and electrode impedance in three retinal prosthesis subjects. IEEE Trans Neural Syst Rehabil Eng 13(2):201–206

    Article  Google Scholar 

  28. de Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A, Mahadevappa M, Yanai D, Mcmahon MJ, Humayun MS, Greenberg RJ, Weiland JD, Fine I (2008) Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci 49(6):2303–2314

    Article  Google Scholar 

  29. Horsager A, Greenwald SH, Weiland JD, Humayun MS, Greenberg RJ, McMahon MJ, Boynton GM, Fine I (2009) Predicting visual sensitivity in retinal prosthesis patients. Invest Ophthalmol Vis Sci 50(4):1483–1491

    Article  Google Scholar 

  30. Yanai DY, Weiland JD, Mahadevappa M, Greenberg RJ, Fine I, Fujii GY, Humayun MS (2007) Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol 143(5):820–827

    Article  Google Scholar 

  31. Caspi A, Dorn JD, McClure KH, Humayun MS, Greenberg RJ, McMahon MJ (2009) Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Arch Ophthalmol 127(4):398–401

    Article  Google Scholar 

  32. Ahuja AK, Dorn JD, Caspi A, McMahon MJ, Dagnelie G, daCruz L, Stanga P, Humayun MS, Greenberg RJ (2011) Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophth 95(4):539–543

    Article  Google Scholar 

  33. Humayun MS, da Crus L, Dagnelie G, Sahel JA, Stanga PE, Filley E, Eliott D, Duncan JL, Greenberg RJ (2011) Interim performance results from the Second Sight Argus II retinal prosthesis study. Invest Ophthalmol Vis Sci 52:E-Abrstract 2594

    Google Scholar 

  34. da Cruz L, Coley B, Christopher F, Merlini F, Wuyyuru V, Sahel JA, Stanga P, Filley E, Dagnelie G, Argus II Study Group (2010) Patients blinded by outer retinal dystrophies are able to identify letters using the ArgusTM II retinal prostthesis system. Invest Ophthalmol Vis Sci 51:E-Abstract 2023

    Google Scholar 

  35. Zhou C, Tao C, Chai X, Sun Y, Ren Q (2010) Implantable Imaging System for Visual Prosthesis. Artif Organs 34(6):518–522

    Article  Google Scholar 

  36. Nasiatka P, Ahuja A, Stiles N, Hauer M, Agrawal RN, Freda R, Guven D, Humayun MS, Weiland JD, Tanguay AR Jr (2005) Intraocular camera for retinal prostheses. Invest Ophthalmol Vis Sci 46:E-Abstract 5277

    Google Scholar 

  37. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29(5):281–289

    Article  Google Scholar 

  38. Zaghloul KA, Boahen K (2004) Optic nerve signals in a neuromorphic chip I: outer and inner retina models. IEEE Trans Biomed Eng 51(4):657–666

    Article  Google Scholar 

  39. Zaghloul KA, Boahen K (2004) Optic nerve signals in a neuromorphic chip II: testing and results. IEEE Trans Biomed Eng 51(4):667–675

    Article  Google Scholar 

  40. Delbruck T, Liu SC (2004) A silicon early visual system as a model animal. Vis Res 44(17):2083–2089

    Article  Google Scholar 

  41. Parikh N, Humayun MS, Weiland JD (2010) Mobility experiments with simulated vision and peripheral cues. Invest Ophthalmol Vis Sci 51:E-Abstract 4320

    Google Scholar 

  42. Humayun MS, Weiland JD, Justus BL, Merritt C, Whalen JJ, Piyathaisere D, Chen SJ, Margalit E, Fujii G, Greenberg RJ, Scribner DA, de Juan EJ, Liu W (2001) Towards a completely implantable, light-sensitive intraocular retinal prosthesis. In: Proceedings of the 23rd international conference of IEEE/EMBS

    Google Scholar 

  43. Walter P, Szurman P, Vobig M, Berk H, Ludtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19(6):546–552

    Article  Google Scholar 

  44. Basinger BC, Rowley AP, Chen K, Humayun MS, Weiland JD (2009) Finite element modeling of retinal prosthesis mechanics. J Neural Eng 6(5):55006

    Article  Google Scholar 

  45. Rodger DC, Weiland JD, Humayun MS, Tai YC (2006) Scalable High Lead-Count Parylene Package for Retinal Prostheses. Sens Actuators B Chem 117(1):107–114

    Article  Google Scholar 

  46. Hetke JF, Lund JL, Najafi K, Wise KD, Anderson DJ (1994) Silicon ribbon cables for chronically implantable microelectrode arrays. IEEE Trans Biomed Eng 41(4):314–321

    Article  Google Scholar 

  47. Rodriguez FJ, Ceballos D, Schuttler M, Valero A, Valderrama E, Stieglitz T, Navarro X (2000) Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods 98(2):105–118

    Article  Google Scholar 

  48. Kovacs GT, Storment CW, Rosen JM (1992) Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE Trans Biomed Eng 39(9):893–902

    Article  Google Scholar 

  49. Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng 48(3):361–371

    Article  Google Scholar 

  50. Güven D, Weiland JD, Maghribi M, Davidson C, Mahadevappa M, Roisenblatt R, Qiu G, Krulevitz P, LaBree L, Humayun MS (2006) Implantation of an inactive epiretinal poly (dimethyl siloxane) electrode in dogs. Exp Eye Res 82(1):81–90

    Article  Google Scholar 

  51. Wang X and Tai YC (1999) A parylene micro check valve. Proceedings IEEE 12th international micro electro mechanical systems conference, pp. 177–182

    Google Scholar 

  52. Robblee LS, McHardy J, Agnew WF, Bullara L (1983) Electrical stimulation with Pt electrodes. VII. Dissolution of Pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Methods 9(4):301–308

    Article  Google Scholar 

  53. Brummer SB, Robblee LS, Hambrecht FT (1983) Criteria for selecting electrodes for electrical stimulation: theoretical and practical considerations. Ann N Y Acad Sci 405:159–171

    Article  Google Scholar 

  54. Rose TL, Robblee LS (1990) Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans Biomed Eng 37(11):1118–1120

    Article  Google Scholar 

  55. Beebe X, Rose TL (1988) Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng 35(6):494–495

    Article  Google Scholar 

  56. Meyer RD, Nguyen TH, Twardoch UM, Rauh RD, Cogan SF (1999) Electrodeposition of iridium oxide charge injection electrodes. In: Proceedings of the 21st international conference of IEEE/EMBS

    Google Scholar 

  57. Weiland JD, Humayun MS, Anderson DJ (2002) In vitro electrical properties for iridium oxide vs. titanium nitride stimulating electrodes. IEEE Trans Biomed Eng 49(12):1574–1579

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiland, J., Humayun, M. (2013). Retinal Prosthesis. In: He, B. (eds) Neural Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5227-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5227-0_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-5226-3

  • Online ISBN: 978-1-4614-5227-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics