Skip to main content

Progress and Prospects for the Ecological Genetics of Mycoheterotrophs

  • Chapter
  • First Online:
Book cover Mycoheterotrophy

Abstract

There are numerous signs that at least some lineages of mycoheterotrophic plants are evolving rapidly, in terms of both speciation and divergence in ecologically interesting traits. Historical demographic and migration patterns, species and population boundaries, genetic architecture, and natural selection can all be studied using the tools of ecological genetics. Furthermore, rapidly advancing molecular and analytical methods are increasingly opening the tools of ecological genetics to non-model organisms. Here, we describe recent initial work on the ecological genetics of several Northern-hemisphere, temperate, ectomycorrhiza-associated fully mycoheterotrophic plants in the genera Hypopitys (Ericaceae), Corallorhiza and Hexalectris (Orchidaceae). Trends emerging from these recent studies include high levels of inbreeding, cryptic genetically distinct sympatric demes, and geographic structuring of populations, all of which may be related to coincident changes in fungal associations and mycoheterotrophic plant speciation. We suggest ways in which ecological genetics and genomics might be used to provide exciting new insights into the biology of mycoheterotrophic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schönswetter P, Lagaye C, Taberlet P, Brochmann C (2012) Genetic consequences of climate change for northern plants. Proc R Soc B 279:2042–2051

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  Google Scholar 

  • Barrett C, Freudenstein J (2008) Molecular evolution of rbcL in the mycoheterotrophic coralroot orchids (Corallorhiza Gagnebin, Orchidaceae). Mol Phylogenet Evol 47:665–679

    Article  PubMed  CAS  Google Scholar 

  • Barrett CF, Freudenstein JV (2009) Patterns of morphological and plastid DNA variation in the Corallorhiza striata species complex (Orchidaceae). Syst Bot 34: 496–504

    Article  Google Scholar 

  • Barrett CF, Freudenstein JV (2011) An integrative approach to delimiting species in a rare but widespread mycoheterotrophic orchid. Mol Ecol 20:2771–2786

    Article  PubMed  Google Scholar 

  • Barrett CF, Freudenstein JV, Taylor DL, Kõljalg U (2010) Rangewide analysis of fungal associations in the fully mycoheterotrophic Corallorhiza striata complex (Orchidaceae) reveals extreme specificity on ectomycorrhizal Tomentella (Thelephoraceae) across North America. Am J Bot 97:628–643

    Article  PubMed  Google Scholar 

  • Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML (2011) Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS One 6:e19315

    Article  PubMed  CAS  Google Scholar 

  • Beatty GE, Provan J (2010) Refugial persistence and postglacial recolonization of North America by the cold-tolerant herbaceous plant Orthilia secunda. Mol Ecol 19:5009–5021

    Article  PubMed  Google Scholar 

  • Beatty GE, Provan J (2011a) High clonal diversity in threatened peripheral populations of the yellow bird’s nest (Hypopitys monotropa; syn. Monotropa hypopitys). Ann Bot 107:663–670

    Article  PubMed  Google Scholar 

  • Beatty GE, Provan J (2011b) Phylogeographic analysis of North American populations of the parasitic herbaceous plant Monotropa hypopitys L. reveals a complex history of range expansion from multiple late glacial refugia. J Biogeogr 38:1585–1599

    Article  Google Scholar 

  • Beatty GE, Provan J (2011c) Comparative phylogeography of two related plant species with overlapping ranges in Europe, and the potential effects of climate change on their intraspecific genetic diversity. BMC Evol Biol 11:29

    Article  PubMed  Google Scholar 

  • Beatty GE, McEvoy PM, Sweeney O, Provan J (2008) Range-edge effects promote clonal growth in peripheral populations of the one-sided wintergreen Orthilia secunda. Divers Distrib 14:546–555

    Article  Google Scholar 

  • Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Mol Ecol 10:2285–2295

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD (2005) On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Mol Ecol 14:1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Björkman E (1960) Monotropa hypopitys L. – an epiparasite on tree roots. Physiol Plant 13:308–327

    Article  Google Scholar 

  • Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18:503–511

    Article  Google Scholar 

  • Cameron DD, Preiss K, Gebauer G, Read DJ (2009) The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytol 183:358–364

    Article  PubMed  CAS  Google Scholar 

  • Carbone I, Kohn L (2001) A microbial population–species interface: nested cladistic and coalescent inference with multilocus data. Mol Ecol 10:947–964

    Article  PubMed  CAS  Google Scholar 

  • Catling P, Engel V (1993) Systematics and distibution of Hexalectris spicata var. arizonica (Orchidaceae). Lindleyana 8:119–125

    Google Scholar 

  • Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:e64

    Article  PubMed  Google Scholar 

  • Coleman R (1995) The wild orchids of California. Comstock Publishing, Ithaca, USA

    Google Scholar 

  • Coleman RA (2002) The wild orchids of Arizona and New Mexico. Cornell University Press, Ithaca, USA

    Google Scholar 

  • Cullings K (2000) Reassessment of phylogenetic relationships of some members of the Monotropoideae based on partial 28S ribosomal RNA gene sequencing. Can J Bot 78:1–2

    Google Scholar 

  • Davey JL, Blaxter MW (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423

    Article  PubMed  CAS  Google Scholar 

  • De Leeneer K, De Schrijver J, Clement L, Baetens M, Lefever S, De Keulenaer S, Van Criekinge W, Deforce D, Van Nieuwerburgh F, Bekaert S, Pattyn F, De Wilde B, Coucke P, Vandesompele J, Claes K, Hellemans J (2011) Practical tools to implement massive parallel pyrosequencing of PCR products in next generation molecular diagnostics. PLoS One 6:e25531

    Article  PubMed  Google Scholar 

  • Delannoy E, Fujii S, Colas des Francs C, Brundrett M, Small I (2011). Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086

    Google Scholar 

  • DePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339

    Article  PubMed  CAS  Google Scholar 

  • Dizon AE, Lockyer C, Perrin WF, Demaster DP, Sisson J (1992) Rethinking the stock concept: a phylogeographic approach. Conserv Biol 6:24–36

    Article  Google Scholar 

  • Donnelly P, Tavare S (1995) Coalescents and genealogical structure under neutrality. Annu Rev Genet 29:401–421

    Article  PubMed  CAS  Google Scholar 

  • Eastwood A (1897) Studies in the herbarium and the field. Proc Calif Acad Sci 1:71–89

    Google Scholar 

  • Eastwood A (1902) Some new species of California plants. Bull Torrey Bot Club 29:75–82

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex, England

    Google Scholar 

  • Freudenstein JV (1987) A preliminary study of Corallorhiza maculata (Orchidaceae) in eastern North America. Contrib Univ Michigan Herb 16:145–153

    Google Scholar 

  • Freudenstein J V (1992). Systematics of Corallorhiza and the Corallorhizinae (Orchidaceae). PhD thesis. Ithaca, NY, USA: Cornell University

    Google Scholar 

  • Freudenstein JV (1997) A monograph of Corallorhiza (Orchidaceae). Harv Pap Bot 1:5–51

    Google Scholar 

  • Freudenstein JV, Doyle JJ (1994) Plastid DNA, morphological variation, and the phylogenetic species concept: the Corallorhiza maculata (Orchidaceae) complex. Syst Bot 19:273–290

    Article  Google Scholar 

  • Freudenstein JV, Senyo DM (2008) Relationships and evolution of matK in a group of leafless orchids (Corallorhiza and Corallorhizinae; Orchidaceae: Epidendroideae). Am J Bot 95:498–505

    Article  PubMed  CAS  Google Scholar 

  • Garant D, Kruuk LEB (2005) How to use molecular marker data to measure evolutionary parameters in wild populations. Mol Ecol 14:1843–1859

    Article  PubMed  CAS  Google Scholar 

  • Goldman DH, Freudenstein JV, Kores PJ, Molvray M, Jarrell DC, Whitten WM, Cameron KM, Jansen RK, Chase MW (2001) Phylogenetics of Arethuseae (Orchidaceae) based on plastid matK and rbcL sequences. Syst Bot 26:670–695

    Google Scholar 

  • Goldman DH, Coleman RA, Magrath LK, Catling PM (2002) Hexalectris. In: The flora of North America (eds) Flora of North America editorial committee, Oxford: University Press. pp. 603–606

    Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  PubMed  CAS  Google Scholar 

  • Hafner MS, Page RDM (1995) Molecular phylogenies and host-parasite cospeciation: gophers and lice as a model system. Philos Trans R Soc Lond B Biol Sci 349:77–83

    Article  PubMed  CAS  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–907

    Article  PubMed  CAS  Google Scholar 

  • Helyar S, Hemmer-Hansen J, Bekkevold D, Taylor M, Ogden R, Limborg M, Cariani A, Maes G, Diopere E, Carvalho G, Nielsen E (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136

    Article  PubMed  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862

    Article  PubMed  Google Scholar 

  • Hopkins SE, Taylor DL (2011) Microsatellite loci development in mycoheterotrophic Corallorhiza maculata (Orchidaceae) with amplification in C. mertensiana. Am J Bot 98:e253–e255

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Takebayashi N, Qi Y, Hickerson M (2011) MTML-msBayes: Approximate Bayesian comparative phylogeographic inference from multiple taxa and multiple loci with rate heterogeneity. BMC Bioinformatics 12:1

    Article  PubMed  CAS  Google Scholar 

  • Jarosz A, Burdon J (1991) Host-pathogen interactions in natural populations of Linum marginale and Melampsora lini: II. Local and regional variation in patterns of resistance and racial structure. Evolution 45:1618–1627

    Google Scholar 

  • Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30

    Article  PubMed  Google Scholar 

  • Kennedy AH, Watson LE (2010) Species delimitations and phylogenetic relationships within the fully myco-heterotrophic Hexalectris (Orchidaceae). Syst Bot 35:64–76

    Article  Google Scholar 

  • Kennedy AH, Taylor DL, Watson LE (2011) Mycorrhizal specificity in the fully mycoheterotrophic Hexalectris Raf. (Orchidaceae: Epidendroideae). Mol Ecol 20:1303–1316

    Article  PubMed  Google Scholar 

  • Kipping, J. L. 1971. Pollination studies of native orchids. M. S. Thesis, San Francisco, CA, USA: San Francisco State College.

    Google Scholar 

  • Klooster MR, Culley TM (2009) Comparative analysis of the reproductive ecology of Monotropa and Monotropsis: Two mycoheterotrophic genera in the Monotropoideae (Ericaceae). Am J Bot 96:1337

    Article  PubMed  Google Scholar 

  • Klooster MR, Culley TM (2010) Population genetic structure of the mycoheterotroph Monotropa hypopitys L. (Ericaceae) and differentiation between red and yellow color forms. Int. J. Plant Sci 171:167–174

    Article  Google Scholar 

  • Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot Rev 68:335–423

    Article  Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (“saprophytic”) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Leake J, McKendrick S, Bidartondo MI, Read DJ (2004) Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytol 163:405–423

    Article  Google Scholar 

  • Liggio J, Liggio A (1999) Wild Orchids of Texas. University of Texas Press, Austin, TX, USA

    Google Scholar 

  • Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotrophic Orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303

    Article  PubMed  Google Scholar 

  • Luer CA (1975) The native orchids of the United States and Canada excluding Florida. New York Botanical Garden, New York, USA

    Google Scholar 

  • McKendrick S, Leake JR, Read DJ (2000a) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  Google Scholar 

  • McKendrick S, Leake JR, Taylor DL, Read DJ (2000b) Symbiotic germination and development of myco-heterotrophic plants in nature: Ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytol 145:523–537

    Article  Google Scholar 

  • Moritz C (1994) Defining “Evolutionarily Significant Units” for conservation. Trends Ecol Evol 9:373–375

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Nadeau NJ, Jiggins CD (2010) A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genet 26:484–492

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145

    PubMed  CAS  Google Scholar 

  • Neyland R (2004) The systematic significance of color variation in Monotropa hypopithys (Ericaceae) inferred from large ribosomal subunit (26S) rRNA gene sequences. Madroño 51:275–279

    Google Scholar 

  • Neyland R (2005) Systematic relationships of Pityopus californicus inferred from large ribosomal subunit (26S) rRNA gene sequences. West N Am Naturalist 65:528–535

    Google Scholar 

  • Nielsen R (2000) Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics 154:931–942

    PubMed  CAS  Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896

    PubMed  CAS  Google Scholar 

  • Nordborg M (1997) Structured coalescent processes on different time scales. Genetics 146:1501–1514

    PubMed  CAS  Google Scholar 

  • Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4:907–909

    Article  PubMed  CAS  Google Scholar 

  • Olson A (1990) Observations on the floral shoots of Monotropa hypopitys (Monotropaceae). Rhodora 92:54–56

    Google Scholar 

  • Olson AR (1993) Patterns of embryo and endosperm formation in Monotropa hypopitys (Monotropaceae) from North America and Western Sweden. Am J Bot 80:839–846

    Article  Google Scholar 

  • Peterson AT (2001) Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599–605

    Article  Google Scholar 

  • Porreca GJ, Zhang K, Li JB, Xie B, Austin D, Vassallo SL, LeProust EM, Peck BJ, Emig CJ, Dahl F, Gao Y, Church GM, Shendure J (2007) Multiplex amplification of large sets of human exons. Nat Methods 4: 931–936

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Provan J, Bennett K (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23: 564–571

    Article  PubMed  Google Scholar 

  • Provan J, Maggs CA (2012) Unique genetic variation at a species’s rear edge is under threat from global climate change. Proc R Soc Lond B 279:39–47

    Article  CAS  Google Scholar 

  • Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. Am J Bot 80:1374–1378

    Article  Google Scholar 

  • Ritland K (2000) Marker-inferred relatedness as a tool for detecting heritability in nature. Mol Ecol 9:1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Seddas PMA, Arias CM, Arnould C, van Tuinen D, Godfroy O, Benhassou HA, Gouzy J, Morandi D, Dessaint F, Gianinazzi-Pearson V (2009) Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions. Mol Plant Microbe Interact 22:341–351

    Article  PubMed  CAS  Google Scholar 

  • Selosse M-A, Bauer R, Moyersoen B (2002a) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195

    Article  CAS  Google Scholar 

  • Selosse M-A, Weiss M, Jany J, Tillier A (2002b) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) LCM Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  PubMed  CAS  Google Scholar 

  • Selosse M-A, Dubois MP, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Shefferson RP, Sandercock BK, Proper J, Beissinger SR (2001) Estimating dormancy and survival of a rare herbaceous perennial using mark-recapture models. Ecology 82:145–156

    Google Scholar 

  • Shefferson RP, Taylor DL, Weiß M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa T, Kawahara T, Miyoshi K, Lee Y (2007) The evo- lutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61:1380–1390

    Article  PubMed  Google Scholar 

  • Sosa V (2007) A molecular and morphological phylogenetic study of subtribe Bletiinae (Epidendreae, Orchidaceae). Syst Bot 32:34–42

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Storz JF, Wheat CW (2010) Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 64:2489–2509

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D. L. 1997. The evolution of myco-heterotrophy and specificity in some North American orchids. PhD. thesis, Berkeley, CA, USA: University of California, Berkeley.

    Google Scholar 

  • Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the “cheating” orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8:1719–1732

    Article  Google Scholar 

  • Taylor DL, Bruns TD, Szaro T, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond B 271:35–43

    Article  Google Scholar 

  • Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397

    Article  PubMed  CAS  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago, IL, USA

    Book  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago, IL, USA

    Google Scholar 

  • Travers SE, Smith MD, Bai J, Hulbert SH, Leach JE, Schnable PS, Knapp AK, Milliken GA, Fay PA, Saleh A, Garrett KA (2007) Ecological genomics: making the leap from model systems in the lab to native populations in the field. Front Ecol Environ 5:19–24

    Article  Google Scholar 

  • Wallace GD (1975) Studies of the Monotropoideae (Ericaceae): taxonomy and distribution. Wasmann J Biol 33:1–88

    Google Scholar 

  • Zimmer K, Meyer C, Gebauer G (2008) The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph. New Phytol 178:395–400

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lee Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, D.L., Barrett, C.F., Beatty, G.E., Hopkins, S.E., Kennedy, A.H., Klooster, M.R. (2013). Progress and Prospects for the Ecological Genetics of Mycoheterotrophs. In: Merckx, V. (eds) Mycoheterotrophy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5209-6_6

Download citation

Publish with us

Policies and ethics